Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 97(7): 1807-1818, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859164

RESUMO

To determine whether phylogenetic relatedness predicts ecological niche differences and community assembly in the field, we transplanted 16 focal plant species into field niches of species of increasing phylogenetic relatedness, manipulated the presence of plant neighbors, and measured environmental covariates. We found that plant survivorship declined with increasing phylogenetic distance in the presence of neighbors, but with neighbor removal, reached a low point in field niches occupied by species diverged at 63 My, the maximum age of confamilials in our study, and then increased again in the sites of distant relatives. Plant biomass was similarly nonlinear, and niche differences increased with neighbor removal. Competitive response showed a linear decline with relatedness. We compared our experimental results to natural community composition, finding that conspecifics and distant relatives were more likely to co-occur at smaller spatial scales, as predicted by our measures of performance.


Assuntos
Ecossistema , Filogenia , Plantas , Ecologia
2.
AoB Plants ; 72015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25818073

RESUMO

Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that 'everything is not everywhere', and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition.

3.
Ecol Lett ; 17(12): 1613-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25328022

RESUMO

We examined whether plant-soil feedback and plant-field abundance were phylogenetically conserved. For 57 co-occurring native and exotic plant species from an old field in Canada, we collected a data set on the effects of three soil biota treatments on plant growth: net whole-soil feedback (combined effects of mutualists and antagonists), feedback with arbuscular mycorrhizal fungi (AMF) collected from soils of conspecific plants, and feedback with Glomus etunicatum, a dominant mycorrhizal fungus. We found phylogenetic signal in both net whole-soil feedback and feedback with AMF of conspecifics; conservatism was especially strong among native plants but absent among exotics. The abundance of plants in the field was also conserved, a pattern underlain by shared plant responses to soil biota. We conclude that soil biota influence the abundance of close plant relatives in nature.


Assuntos
Ecossistema , Micorrizas/fisiologia , Filogenia , Plantas , Microbiologia do Solo , Retroalimentação Fisiológica , Solo , Simbiose
4.
AoB Plants ; 62014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25165062

RESUMO

Neighbouring plants are known to vary from having similar to dissimilar arbuscular mycorrhizal fungal (AMF) communities. One possibility is that closely related plants have more similar AMF communities than more distantly related plants, an indication of phylogenetic host specificity. Here, we investigated the structure of AMF communities among dominant grassland plants at three sites in the Northern Great Plains to test whether the pairwise phylogenetic distance among plant species was correlated with pairwise AMF community dissimilarity. For eight dominant and co-occurring grassland plant species, we reconstructed a phylogeny based on DNA data and characterized the AMF communities of their roots at each site. Community analyses revealed that AMF communities varied among sites and among plant species. Contrary to expectations for phylogenetic host specificity, we found that within a site more closely related plants had more distinct AMF communities despite their having similar phenologies. Associations with unique AMF communities may enhance the functional complementarity of related species and promote their coexistence.

5.
Am J Bot ; 101(2): 219-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24509800

RESUMO

Serpentine soils are a model system for the study of plant adaptation, speciation, and species interactions. Serpentine soil is an edaphically stressful, low productivity soil type that hosts stunted vegetation and a spectacular level of plant endemism. One of the first papers on serpentine plant endemism was by Arthur Kruckeberg, titled "Intraspecific variability in the response of certain native plant species to serpentine soil." Published in the American Journal of Botany in 1951, it has been cited over 100 times. Here, I review the context and content of the paper, as well as its impact. On the basis of the results of reciprocal transplant experiments in the greenhouse, Kruckeberg made three important conclusions on the nature of serpentine plant endemism: (1) Plants are locally adapted to serpentine soils, forming distinct soil ecotypes; (2) soil ecotypes are the first stage in the evolutionary progression toward serpentine endemism; and (3) serpentine endemics are restricted from more fertile nonserpentine soils by competition. Kruckeberg's paper inspired a substantial amount of research, especially in the three areas reviewed here: local adaptation and plant traits, speciation, and the interaction of climate and soil in plant endemism. In documenting soil ecotypes, Kruckeberg identified serpentine soils as a potent selective factor in plant evolution and helped establish serpentine soils as a model system in evolution and ecology.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Ecótipo , Plantas , Solo , Clima , Ecologia
6.
Proc Biol Sci ; 281(1778): 20132980, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24452025

RESUMO

A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under 'budding' speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister-non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities.


Assuntos
Evolução Biológica , Especiação Genética , Plantas/genética , Ecossistema , Filogenia , Filogeografia , Dinâmica Populacional , Reprodução , Especificidade da Espécie
7.
Am Nat ; 180(2): 257-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22766935

RESUMO

We addressed the classic question of whether community diversity is determined from the bottom up by the breadth and partitioning of niche space or from the top down by historical and evolutionary forces. Specifically, we contrasted local and regional explanations for the diversity of Californian plant communities using phylogenetic and functional analyses. Our communities were sets of four field plots that sampled alpha (within-plot) and beta (among-plot) sources of variation in diversity. We sampled 93 such communities nested within 78 larger regions for which regional species pools could be independently estimated, spanning the California Floristic Province. We measured phylogenetic and functional diversity within plots and between plots on neighboring soils and slopes. We also measured the phylogenetic diversity of regional species pools and analyzed them in terms of biogeographic groups. We found no evidence linking the phylogenetic diversity of communities to within-plot functional diversity or among-plot beta diversity. Instead, we found that the phylogenetic diversity of communities depends on that of regional species pools. In turn, phylogenetically diverse pools were those with high proportions of species of northern biogeographic affinity, which have relatively mesic distributions and traits. This supports what we call the climatic refuge hypothesis rather than the biogeographic crossroads hypothesis.


Assuntos
Evolução Biológica , Biota , Especiação Genética , Plantas , California , Clima , Filogenia , Estações do Ano
8.
Evolution ; 65(2): 365-76, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20812977

RESUMO

Habitat specialization plays an important role in the creation and loss of biodiversity over ecological and evolutionary time scales. In California, serpentine soils have a distinctive flora, with 246 serpentine habitat specialists (i.e., endemics). Using molecular phylogenies for 23 genera containing 784 taxa and 51 endemics, we infer few transitions out of the endemic state, which is shown by an analysis of transition rates to simply reflect the low frequency of endemics (i.e., reversal rates were high). The finding of high reversal rates, but a low number of reversals, is consistent with the widely hypothesized trade-off between serpentine tolerance and competitive ability, under which serpentine endemics are physiologically capable of growing in less-stressful habitats but competitors lead to their extirpation. Endemism is also characterized by a decrease in speciation and extinction rates and a decrease in the overall diversification rate. We also find that tolerators (species with nonserpentine and serpentine populations) undergo speciation in serpentine habitats to give rise to new serpentine endemics but are several times more likely to lose serpentine populations to produce serpentine-intolerant taxa. Finally, endemics were younger on average than nonendemics, but this alone does not explain their low diversification.


Assuntos
Biodiversidade , Ecossistema , Plantas/classificação , California , Especiação Genética , Filogenia , Solo
9.
Ecol Lett ; 13(10): 1310-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20649638

RESUMO

The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?).


Assuntos
Conservação dos Recursos Naturais , Ecologia/tendências , Ecossistema , Biodiversidade , Evolução Biológica , Mudança Climática , Cadeia Alimentar , Interações Hospedeiro-Parasita , Espécies Introduzidas , Modelos Biológicos , Filogenia
10.
Proc Biol Sci ; 277(1691): 2131-8, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20335205

RESUMO

Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate-richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness-temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness-temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog-bear clade). We show that the slope of the global climate-richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.


Assuntos
Biodiversidade , Evolução Biológica , Clima , Demografia , Ecossistema , Mamíferos/fisiologia , Filogenia , Adaptação Biológica/fisiologia , Animais , Geografia , Modelos Biológicos , Especificidade da Espécie
11.
Ecol Appl ; 18(2): 377-90, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18488603

RESUMO

Distinguishing the manner in which dispersal limitation and niche requirements control the spread of invasive pathogens is important for prediction and early detection of disease outbreaks. Here, we use niche modeling augmented by dispersal estimation to examine the degree to which local habitat conditions vs. force of infection predict invasion of Phytophthora ramorum, the causal agent of the emerging infectious tree disease sudden oak death. We sampled 890 field plots for the presence of P. ramorum over a three-year period (2003-2005) across a range of host and abiotic conditions with variable proximities to known infections in California, USA. We developed and validated generalized linear models of invasion probability to analyze the relative predictive power of 12 niche variables and a negative exponential dispersal kernel estimated by likelihood profiling. Models were developed incrementally each year (2003, 2003-2004, 2003-2005) to examine annual variability in model parameters and to create realistic scenarios for using models to predict future infections and to guide early-detection sampling. Overall, 78 new infections were observed up to 33.5 km from the nearest known site of infection, with slightly increasing rates of prevalence across time windows (2003, 6.5%; 2003-2004, 7.1%; 2003-2005, 9.6%). The pathogen was not detected in many field plots that contained susceptible host vegetation. The generalized linear modeling indicated that the probability of invasion is limited by both dispersal and niche constraints. Probability of invasion was positively related to precipitation and temperature in the wet season and the presence of the inoculum-producing foliar host Umbellularia californica and decreased exponentially with distance to inoculum sources. Models that incorporated niche and dispersal parameters best predicted the locations of new infections, with accuracies ranging from 0.86 to 0.90, suggesting that the modeling approach can be used to forecast locations of disease spread. Application of the combined niche plus dispersal models in a geographic information system predicted the presence of P. ramorum across approximately 8228 km2 of California's 84785 km2 (9.7%) of land area with susceptible host species. This research illustrates how probabilistic modeling can be used to analyze the relative roles of niche and dispersal limitation in controlling the distribution of invasive pathogens.


Assuntos
Ecossistema , Modelos Biológicos , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Árvores/microbiologia , California , Micoses/transmissão
12.
Ecol Appl ; 18(1): 159-71, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18372563

RESUMO

Human-caused changes in land use and land cover have dramatically altered ecosystems worldwide and may facilitate the spread of infectious diseases. To address this issue, we examined the influence of land-cover changes between 1942 and 2000 on the establishment of an invasive pathogen, Phytophthora ramorum, which causes the forest disease known as Sudden Oak Death. We assessed effects of land-cover change, forest structure, and understory microclimate on measures of inoculum load and disease prevalence in 102 15 x 15 m plots within a 275-km2 region in northern California. Within a 150 m radius area around each plot, we mapped types of land cover (oak woodland, chaparral, grassland, vineyard, and development) in 1942 and 2000 using detailed aerial photos. During this 58-year period, oak woodlands significantly increased in area by 25%, while grassland and chaparral decreased by 34% and 51%, respectively. Analysis of covariance revealed that vegetation type in 1942 and woodland expansion were significant predictors of pathogen inoculum load in bay laurel (Umbellularia californica), the primary inoculum-producing host for P. ramorum in mixed evergreen forests. Path analysis showed that woodland expansion resulted in larger forests with higher densities of the primary host trees (U. californica, Quercus agrifolia, Q. kelloggii) and cooler understory temperatures. Together, the positive effects of woodland size and negative effects of understory temperature explained significant variation in inoculum load and disease prevalence in bay laurel; host stem density had additional positive effects on inoculum load. We conclude that enlargement of woodlands and closure of canopy gaps, likely due largely to years of fire suppression, facilitated establishment of P. ramorum by increasing the area occupied by inoculum-production foliar hosts and enhancing forest microclimate conditions. Epidemiological studies that incorporate land-use change are rare but may increase understanding of disease dynamics and improve our ability to manage invasive forest pathogens.


Assuntos
Micoses/transmissão , Phytophthora/patogenicidade , Doenças das Plantas , Árvores
13.
New Phytol ; 177(3): 756-766, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18069961

RESUMO

Sudden oak death is an emerging forest disease caused by the invasive pathogen Phytophthora ramorum. Genetic and environmental factors affecting susceptibility to P. ramorum in the key inoculum-producing host tree Umbellularia californica (bay laurel) were examined across a heterogeneous landscape in California, USA. Laboratory susceptibility trials were conducted on detached leaves and assessed field disease levels for 97 host trees from 12 225-m(2) plots. Genotype and phenotype characteristics were assessed for each tree. Effects of plot-level environmental conditions (understory microclimate, amount of solar radiation and topographic moisture potential) on disease expression were also evaluated. Susceptibility varied significantly among U. californica trees, with a fivefold difference in leaf lesion size. Lesion size was positively related to leaf area, but not to other phenotypic traits or to field disease level. Genetic diversity was structured at three spatial scales, but primarily among individuals within plots. Lesion size was significantly related to amplified fragment length polymorphism (AFLP) markers, but local environment explained most variation in field disease level. Thus, substantial genetic variation in susceptibility to P. ramorum occurs in its principal foliar host U. californica, but local environment mediates expression of susceptibility in nature.


Assuntos
Ecossistema , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Phytophthora/imunologia , Doenças das Plantas/imunologia , Umbellularia/imunologia , California , Predisposição Genética para Doença , Genótipo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Umbellularia/genética , Umbellularia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...