Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 80: 65-74, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33120329

RESUMO

PURPOSE: This study investigated the impact of lung density on the isolated lung tumor dose for volumetric modulated arc therapy (VMAT) in an inline magnetic resonance linear accelerator (MR-Linac) using the Monte Carlo (MC) simulation. METHODS: CT images of the thorax phantoms with lung tumors of 1, 2, and 3 cm diameters were converted into voxel-base phantoms with lung densities of 0.1, 0.2, and 0.3 g/cm3, respectively. The dose distributions were calculated for partial-arc VMAT. The dose distributions were compared using dose differences, dose volume histograms, and dose volume indices. RESULTS: In all cases, the inline magnetic field significantly enhanced the lung tumor dose compared to that at 0 T. For the 1 cm lung tumor, the inline magnetic field of 1 T increased the minimum dose of 95% of the Planning target volume (PTV D95) by 14.0% in 0.1 g/cm3 lung density as compared to that in 0.3 g/cm3 at 0 T. In contrast, at 0 and 0.5 T, the PTV D95 in 0.3 g/cm3 lung density was larger than that in lung density of 0.1 g/cm3. For the 2 cm lung tumor, a similar tendency to 1 cm was observed, whereas the dose impact of lung density was smaller than that for 1 cm. For the 3 cm lung tumor, the lung tumor dose was independent of lung density at 0.5 T and 1.0 T. CONCLUSION: The inline MR-Linac with the magnetic field over 1 T can enhance the PTV D95 for VMAT regardless of the lung density.


Assuntos
Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...