Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancer Cell ; 42(1): 101-118.e11, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38157863

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Cancer-associated fibroblasts (CAFs) are recognized potential therapeutic targets, but poor understanding of these heterogeneous cell populations has limited the development of effective treatment strategies. We previously identified transforming growth factor beta (TGF-ß) as a main driver of myofibroblastic CAFs (myCAFs). Here, we show that epidermal growth factor receptor/Erb-B2 receptor (EGFR/ERBB2) signaling is induced by TGF-ß in myCAFs through an autocrine process mediated by amphiregulin. Inhibition of this EGFR/ERBB2-signaling network in PDAC organoid-derived cultures and mouse models differentially impacts distinct CAF subtypes, providing insights into mechanisms underpinning their heterogeneity. Remarkably, EGFR-activated myCAFs promote PDAC metastasis in mice, unmasking functional significance in myCAF heterogeneity. Finally, analyses of other cancer datasets suggest that these processes might operate in other malignancies. These data provide functional relevance to myCAF heterogeneity and identify a candidate target for preventing tumor invasion in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Miofibroblastos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Transdução de Sinais , Fator de Crescimento Transformador beta , Microambiente Tumoral
2.
Cell Stem Cell ; 30(8): 1091-1109.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541213

RESUMO

While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Fator Trefoil-2/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/metabolismo , Células Acinares/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo
3.
Oncotarget ; 13: 347-359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178191

RESUMO

Barrett's esophagus (BE) is a precursor of the esophageal adenocarcinoma (EAC). BE- development and its progression to cancer is associated with gastroesophageal reflux disease. However, there is currently no molecular risk prediction model that accurately identifies patients at high risk for EAC. Here, we investigated the impact of shortened telomeres in a mouse model for Barrett esophagus (L2-IL1B). The L2-IL1B mouse model is characterized by IL-1ß-mediated inflammation, which leads to a Barrett-like metaplasia in the transition zone between the squamous forestomach and glandular cardia/stomach. Telomere shortening was achieved by mTERC knockout. In the second generation (G2) of mTERC knockout L2-IL1B.mTERC-/- G2 mice exhibited telomere dysfunction with significantly shorter telomeres as measured by qFISH compared to L2-IL1B mice, correlating with stronger DNA damage in the form of phosphorylation of H2AX (γH2AX). Macroscopically, tumor area along the squamocolumnar junction (SCJ) was increased in L2-IL1B.mTERC-/- G2 mice, along with increased histopathological dysplasia. In vitro studies indicated increased organoid formation capacity in BE tissue from L2-IL1B.mTERC-/- G2 mice. In addition, pilot studies of human BE-, dysplasia- and EAC tissue samples confirmed that BE epithelial cells with or without dysplasia (LGD) had shorter telomeres compared to gastric cardia tissue. Of note, differentiated goblet cells retained longer telomeres than columnar lined BE epithelium. In conclusion, our studies suggest that shortened telomeres are functionally important for tumor development in a mouse model of BE and are associated with proliferating columnar epithelium in human BE. We propose that shortened telomeres should be evaluated further as a possible biomarker of cancer risk in BE patients.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Adenocarcinoma , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Biomarcadores , Transformação Celular Neoplásica , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Humanos , Interleucina-1beta , Metaplasia , Camundongos , Encurtamento do Telômero
4.
Eur J Nucl Med Mol Imaging ; 49(6): 2049-2063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34882260

RESUMO

PURPOSE: The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy. METHODS: Here, we evaluated the membrane-bound highly specific Hsp70-specific contrast agent Tumor-Penetrating Peptide (Hsp70-TPP) in guided fluorescence molecular endoscopy biopsy. RESULTS: Hsp70 was significantly overexpressed as determined by IHC in dysplasia and EAC compared with non-dysplastic BE in patient samples (n = 12) and in high-grade dysplastic lesions in a transgenic (L2-IL1b) mouse model of BE. In time-lapse microscopy, Hsp70-TPP was rapidly taken up and internalized  by human BE dysplastic patient-derived organoids. Flexible fluorescence endoscopy of the BE mouse model allowed a specific detection of Hsp70-TPP-Cy5.5 that corresponded closely with the degree of dysplasia but not BE. Ex vivo application of Hsp70-TPP-Cy5.5 to freshly resected whole human EAC specimens revealed a high (> 4) tumor-to-background ratio and a specific detection of previously undetected tumor infiltrations. CONCLUSION: In summary, these findings suggest that Hsp70-targeted imaging using fluorescently labeled TPP peptide may improve tumor surveillance in BE patients.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/epidemiologia , Biópsia , Neoplasias Esofágicas/diagnóstico por imagem , Esofagoscopia/métodos , Humanos , Camundongos
5.
Microorganisms ; 9(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946037

RESUMO

Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett's esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.

6.
Cancers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922955

RESUMO

Chronic inflammation plays an important role in the pathogenesis of oesophageal adenocarcinoma (EAC) and its only known precursor, Barrett's oesophagus (BE). Recent studies have shown that oesophageal TLR2 levels increase from normal epithelium towards EAC. TLR2 signalling is therefore likely to be important during EAC development and progression, which requires an inflammatory microenvironment. Here, we show that, in response to TLR2 stimulation, BE organoids and early-stage EAC cells secrete pro-inflammatory cytokines and chemokines which recruit macrophages to the tumour site. Factors secreted from TLR2-stimulated EAC cells are shown to subsequently activate TLR2 on naïve macrophages, priming them for inflammasome activation and inducing their differentiation to an M2/TAM-like phenotype. We identify the endogenous TLR2 ligand, HMGB1, as the factor secreted from EAC cells responsible for the observed TLR2-mediated effects on macrophages. Our results indicate that HMGB1 signalling between EAC cells and macrophages creates an inflammatory tumour microenvironment to facilitate EAC progression. In addition to identifying HMGB1 as a potential target for early-stage EAC treatment, our data suggest that blocking TLR2 signalling represents a mechanism to limit HMGB1 release, inflammatory cell infiltration and inflammation during EAC progression.

7.
Carcinogenesis ; 42(8): 1068-1078, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33878160

RESUMO

Barrett's esophagus (BE) is the main known precursor condition of esophageal adenocarcinoma (EAC). BE is defined by the presence of metaplasia above the normal squamous columnar junction and has mainly been attributed to gastroesophageal reflux disease and chronic reflux esophagitis. Thus, the rising incidence of EAC in the Western world is probably mediated by chronic esophageal inflammation, secondary to gastroesophageal reflux disease in combination with environmental risk factors such as a Western diet and obesity. However, (at present) risk prediction tools and endoscopic surveillance have shown limited effectiveness. Chemoprevention as an adjunctive approach remains an attractive option to reduce the incidence of neoplastic disease. Here, we investigate the feasibility of chemopreventive approaches in BE and EAC via inhibition of inflammatory signaling in a transgenic mouse model of BE and EAC (L2-IL1B mice), with accelerated tumor formation on a high-fat diet (HFD). L2-IL1B mice were treated with the IL-1 receptor antagonist Anakinra and the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin or Sulindac. Interleukin-1b antagonism reduced tumor progression in L2-IL1B mice with or without a HFD, whereas both NSAIDs were effective chemoprevention agents in the accelerated HFD-fed L2-IL1B mouse model. Sulindac treatment also resulted in a marked change in the immune profile of L2-IL1B mice. In summary, anti-inflammatory treatment of HFD-treated L2-IL1B mice acted protectively on disease progression. These results from a mouse model of BE support results from clinical trials that suggest that anti-inflammatory medication may be effective in the chemoprevention of EAC.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Quimioprevenção/métodos , Sulindaco/uso terapêutico , Adenocarcinoma , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Neoplasias Esofágicas , Camundongos , Fenótipo
8.
Sci Rep ; 11(1): 4509, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627749

RESUMO

Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC), but its cellular origin and mechanism of neoplastic progression remain unresolved. Notch signaling, which plays a key role in regulating intestinal stem cell maintenance, has been implicated in a number of cancers. The kinase Dclk1 labels epithelial post-mitotic tuft cells at the squamo-columnar junction (SCJ), and has also been proposed to contribute to epithelial tumor growth. Here, we find that genetic activation of intracellular Notch signaling in epithelial Dclk1-positive tuft cells resulted in the accelerated development of metaplasia and dysplasia in a mouse model of BE (pL2.Dclk1.N2IC mice). In contrast, genetic ablation of Notch receptor 2 in Dclk1-positive cells delayed BE progression (pL2.Dclk1.N2fl mice), and led to increased secretory cell differentiation. The accelerated BE progression in pL2.Dclk1.N2IC mice correlated with changes to the transcriptomic landscape, most notably for the activation of oncogenic, proliferative pathways in BE tissues, in contrast to upregulated Wnt signalling in pL2.Dclk1.N2fl mice. Collectively, our data show that Notch activation in Dclk1-positive tuft cells in the gastric cardia can contribute to BE development.


Assuntos
Esôfago de Barrett/metabolismo , Quinases Semelhantes a Duplacortina/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Metaplasia/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma/metabolismo , Animais , Carcinogênese/metabolismo , Cárdia/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Neoplasias Esofágicas/metabolismo , Esôfago/metabolismo , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
9.
Carcinogenesis ; 42(3): 405-413, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33068426

RESUMO

Chronic inflammation induces Barrett's Esophagus (BE) which can advance to esophageal adenocarcinoma. Elevated levels of interleukin (IL)-1b, IL-6 and IL-8 together with activated nuclear factor-kappaB (NF-κB), have been identified as important mediators of tumorigenesis. The inflammatory milieu apart from cancer cells and infiltrating immune cells contains myofibroblasts (MFs) that express aSMA and Vimentin. As we observed that increased NF-κB activation and inflammation correlates with increased MF recruitment and an accelerated phenotype we here analyze the role of NF-κB in MF during esophageal carcinogenesis in our L2-IL-1B mouse model. To analyze the effect of NF-κB signaling in MFs, we crossed L2-IL-1B mice to tamoxifen inducible Vim-Cre (Vim-CreTm) mice and floxed RelA (p65fl/fl) mice to specifically eliminate NF-κB signaling in MF (IL-1b.Vim-CreTm.p65fl/fl). The interaction of epithelial cells and stromal cells was further analyzed in mouse BE organoids and patient-derived human organoids. Histological scoring of IL-1b.Vim-CreTm.p65fl/fl mice showed a significantly attenuated phenotype compared with L2-IL-1B mice, with mild inflammation, decreased metaplasia and no dysplasia. This correlated with decreased proliferation and increased differentiation in cardia tissue of IL-1b.Vim-CreTm.p65fl/fl compared with L2-IL-1B mice. Distinct changes of cytokines and chemokines within the local microenvironment in IL-1b.Vim-CreTm.p65fl/fl mice reflected the histopathological abrogated phenotype. Co-cultured NF-κB inhibitor treated MF with mouse BE organoids demonstrated NF-κB-dependent growth and migration. MFs are essential to form an inflammatory and procarcinogenic microenvironment and NF-κB signaling in stromal cells emerges as an important driver of esophageal carcinogenesis. Our data suggest anti-inflammatory approaches as preventive strategies during surveillance of BE patients.


Assuntos
Adenocarcinoma/imunologia , Esôfago de Barrett/imunologia , Transformação Celular Neoplásica/imunologia , Neoplasias Esofágicas/imunologia , Transdução de Sinais/imunologia , Fator de Transcrição RelA/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/prevenção & controle , Animais , Anti-Inflamatórios/uso terapêutico , Esôfago de Barrett/tratamento farmacológico , Esôfago de Barrett/patologia , Biópsia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle , Esôfago/imunologia , Esôfago/patologia , Humanos , Camundongos , Camundongos Knockout , Miofibroblastos/imunologia , Miofibroblastos/patologia , Organoides , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Células Estromais/imunologia , Células Estromais/patologia , Fator de Transcrição RelA/genética , Microambiente Tumoral/imunologia , Vimentina/metabolismo
10.
J Neurosci Rural Pract ; 11(3): 420-429, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32753807

RESUMO

Background The diagnosis of muscular dystrophies involves clinical discretion substantiated by dystrophic changes on muscle biopsy. The different subtypes of muscular dystrophy can be diagnosed using techniques to identify the loss of protein or molecular alterations. Materials and Methods Clinically suspicious cases confirmed to have muscular dystrophy on muscle biopsy seen at two tertiary care centers in North India were enrolled for the study. Immunohistochemistry (IHC) for dystrophin, merosin, sarcoglycan, emerin, and dysferlin proteins was performed. The spectrum of muscular dystrophies diagnosed was analyzed. Cost of diagnosing the cases using IHC was estimated and compared with that of standard molecular tests available for the diagnosis of muscular dystrophies. Statistics Descriptive statistics were used for data analysis. Mean and standard deviations were used for continuous variables, whereas categorical variables were analyzed using frequency percentage. Results A total of 47 cases of muscular dystrophies were studied. This included nine cases of Duchenne, three cases of Becker's dystrophy, and one dystrophinopathy carrier. One case of α, seven cases of ß, and two cases of δ sarcoglycanopathy, along with two cases of facioscapulohumeral dystrophy and a single case of dysferlinopathy were detected. Genetic studies were required for a subset of 16 cases. The cost of using muscle biopsy and IHC was substantially lower than that of molecular methods for the identification of muscular dystrophy subtypes. Conclusion We detailed an algorithmic approach for diagnosing muscular dystrophies using muscle biopsy. The prevalence of biopsy proven muscular dystrophies from two tertiary care centers in North India is compared with that from other centers. Genetic studies are currently of limited availability in India and are more expensive as compared with biopsy and IHC. Using these methodologies sequentially with a "biopsy first approach" may be the prudent approach for low-income countries.

11.
Cancer Immunol Immunother ; 69(12): 2635-2649, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32613271

RESUMO

Barrett's esophagus (BE) is an inflammatory condition and a neoplastic precursor to esophageal adenocarcinoma (EAC). Inflammasome signaling, which contributes to acute and chronic inflammation, results in caspase-1 activation leading to the secretion of IL-1ß and IL-18, and inflammatory cell death (pyroptosis). This study aimed to characterize caspase-1 expression, and its functional importance, during disease progression to BE and EAC. Three models of disease progression (Normal-BE-EAC) were employed to profile caspase-1 expression: (1) a human esophageal cell line model; (2) a murine model of BE; and (3) resected tissue from BE-associated EAC patients. BE patient biopsies and murine BE organoids were cultured ex vivo in the presence of a caspase-1 inhibitor, to determine the importance of caspase-1 for inflammatory cytokine and chemokine secretion.Epithelial caspase-1 expression levels were significantly enhanced in BE (p < 0.01). In contrast, stromal caspase-1 levels correlated with histological inflammation scores during disease progression (p < 0.05). Elevated secretion of IL-1ß from BE explanted tissue, compared to adjacent normal tissue (p < 0.01), confirmed enhanced activity of caspase-1 in BE tissue. Caspase-1 inhibition in LPS-stimulated murine BE organoids caused a significant reduction in IL-1ß (p < 0.01) and CXCL1 (p < 0.05) secretion, confirming the importance of caspase-1 in the production of cytokines and chemokines associated with disease progression from BE to EAC. Targeting caspase-1 activity in BE patients should therefore be tested as a novel strategy to prevent inflammatory complications associated with disease progression.


Assuntos
Adenocarcinoma/imunologia , Esôfago de Barrett/imunologia , Caspase 1/metabolismo , Mucosa Esofágica/patologia , Neoplasias Esofágicas/imunologia , Inflamassomos/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Idoso , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Biópsia , Caspase 1/imunologia , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Mucosa Esofágica/citologia , Mucosa Esofágica/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Esofagectomia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
12.
Gastroenterology ; 159(2): 575-590, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325086

RESUMO

BACKGROUND & AIMS: Studies are needed to determine the mechanism by which Barrett's esophagus (BE) progresses to esophageal adenocarcinoma (EAC). Notch signaling maintains stem cells in the gastrointestinal tract and is dysregulated during carcinogenesis. We explored the relationship between Notch signaling and goblet cell maturation, a feature of BE, during EAC pathogenesis. METHODS: We measured goblet cell density and levels of Notch messenger RNAs in BE tissues from 164 patients, with and without dysplasia or EAC, enrolled in a multicenter study. We analyzed the effects of conditional expression of an activated form of NOTCH2 (pL2.Lgr5.N2IC), conditional deletion of NOTCH2 (pL2.Lgr5.N2fl/fl), or loss of nuclear factor κB (NF-κB) (pL2.Lgr5.p65fl/fl), in Lgr5+ (progenitor) cells in L2-IL1B mice (which overexpress interleukin 1 beta in esophagus and squamous forestomach and are used as a model of BE). We collected esophageal and stomach tissues and performed histology, immunohistochemistry, flow cytometry, transcriptome, and real-time polymerase chain reaction analyses. Cardia and forestomach tissues from mice were cultured as organoids and incubated with inhibitors of Notch or NF-kB. RESULTS: Progression of BE to EAC was associated with a significant reduction in goblet cell density comparing nondysplastic regions of tissues from patients; there was an inverse correlation between goblet cell density and levels of NOTCH3 and JAG2 messenger RNA. In mice, expression of the activated intracellular form of NOTCH2 in Lgr5+ cells reduced goblet-like cell maturation, increased crypt fission, and accelerated the development of tumors in the squamocolumnar junction. Mice with deletion of NOTCH2 from Lgr5+ cells had increased maturation of goblet-like cells, reduced crypt fission, and developed fewer tumors. Esophageal tissues from in pL2.Lgr5.N2IC mice had increased levels of RelA (which encodes the p65 unit of NF-κB) compared to tissues from L2-IL1B mice, and we found evidence of increased NF-κB activity in Lgr5+ cells. Esophageal tissues from pL2.Lgr5.p65fl/fl mice had lower inflammation and metaplasia scores than pL2.Lgr5.N2IC mice. In organoids derived from pL2-IL1B mice, the NF-κB inhibitor JSH-23 reduced cell survival and proliferation. CONCLUSIONS: Notch signaling contributes to activation of NF-κB and regulates differentiation of gastric cardia progenitor cells in a mouse model of BE. In human esophageal tissues, progression of BE to EAC was associated with reduced goblet cell density and increased levels of Notch expression. Strategies to block this pathway might be developed to prevent EAC in patients with BE.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Carcinogênese/patologia , Neoplasias Esofágicas/patologia , Células Caliciformes/patologia , Receptores Notch/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Idoso , Animais , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Biópsia , Carcinogênese/genética , Diferenciação Celular/genética , Estudos Transversais , Modelos Animais de Doenças , Progressão da Doença , Mucosa Esofágica/citologia , Mucosa Esofágica/diagnóstico por imagem , Mucosa Esofágica/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Esofagoscopia , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Estudos Prospectivos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores Notch/genética , Transdução de Sinais
13.
Dis Esophagus ; 32(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329831

RESUMO

Risk stratification in patients with Barrett's esophagus (BE) to prevent the development of esophageal adenocarcinoma (EAC) is an unsolved task. The incidence of EAC and BE is increasing and patients are still at unknown risk. BarrettNET is an ongoing multicenter prospective cohort study initiated to identify and validate molecular and clinical biomarkers that allow a more personalized surveillance strategy for patients with BE. For BarrettNET participants are recruited in 20 study centers throughout Germany, to be followed for progression to dysplasia (low-grade dysplasia or high-grade dysplasia) or EAC for >10 years. The study instruments comprise self-administered epidemiological information (containing data on demographics, lifestyle factors, and health), as well as biological specimens, i.e., blood-based samples, esophageal tissue biopsies, and feces and saliva samples. In follow-up visits according to the individual surveillance plan of the participants, sample collection is repeated. The standardized collection and processing of the specimen guarantee the highest sample quality. Via a mobile accessible database, the documentation of inclusion, epidemiological data, and pathological disease status are recorded subsequently. Currently the BarrettNET registry includes 560 participants (23.1% women and 76.9% men, aged 22-92 years) with a median follow-up of 951 days. Both the design and the size of BarrettNET offer the advantage of answering research questions regarding potential causes of disease progression from BE to EAC. Here all the integrated methods and materials of BarrettNET are presented and reviewed to introduce this valuable German registry.


Assuntos
Adenocarcinoma/diagnóstico , Esôfago de Barrett/complicações , Detecção Precoce de Câncer/métodos , Neoplasias Esofágicas/diagnóstico , Vigilância da População/métodos , Medição de Risco/métodos , Adenocarcinoma/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Regras de Decisão Clínica , Progressão da Doença , Neoplasias Esofágicas/etiologia , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros , Fatores de Risco , Adulto Jovem
14.
Gastroenterology ; 157(2): 492-506.e2, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998992

RESUMO

BACKGROUND & AIMS: Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Progression from BE to cancer is associated with obesity, possibly due to increased abdominal pressure and gastroesophageal reflux disease, although this pathogenic mechanism has not been proven. We investigated whether environmental or dietary factors associated with obesity contribute to the progression of BE to EAC in mice. METHODS: Tg(ED-L2-IL1RN/IL1B)#Tcw mice (a model of BE, called L2-IL1B mice) were fed a chow (control) or high-fat diet (HFD) or were crossbred with mice that express human interleukin (IL) 8 (L2-IL1B/IL8 mice). Esophageal tissues were collected and analyzed for gene expression profiles and by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. Organoids were established from BE tissue of mice and cultured with serum from lean or obese individuals or with neutrophils from L2-IL1B mice. Feces from mice were analyzed by 16s ribosomal RNA sequencing and compared to 16s sequencing data from patients with dysplasia or BE. L2-IL1B were mice raised in germ-free conditions. RESULTS: L2-IL1B mice fed an HFD developed esophageal dysplasia and tumors more rapidly than mice fed the control diet; the speed of tumor development was independent of body weight. The acceleration of dysplasia by the HFD in the L2-IL1B mice was associated with a shift in the gut microbiota and an increased ratio of neutrophils to natural killer cells in esophageal tissues compared with mice fed a control diet. We observed similar differences in the microbiomes from patients with BE that progressed to EAC vs patients with BE that did not develop into cancer. Tissues from dysplasias of L2-IL1B mice fed the HFD contained increased levels of cytokines that are produced in response to CXCL1 (the functional mouse homolog of IL8, also called KC). Serum from obese patients caused organoids from L2-IL1B/IL8 mice to produce IL8. BE tissues from L2-IL1B mice fed the HFD and from L2-IL1B/IL8 mice contained increased numbers of myeloid cells and cells expressing Cxcr2 and Lgr5 messenger RNAs (epithelial progenitors) compared with mice fed control diets. BE tissues from L2-IL1B mice raised in germ-free housing had fewer progenitor cells and developed less dysplasia than in L2-IL1 mice raised under standard conditions; exposure of fecal microbiota from L2-IL1B mice fed the HFD to L2-IL1B mice fed the control diet accelerated tumor development. CONCLUSIONS: In a mouse model of BE, we found that an HFD promoted dysplasia by altering the esophageal microenvironment and gut microbiome, thereby inducing inflammation and stem cell expansion, independent of obesity.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Neoplasias Esofágicas/patologia , Microbioma Gastrointestinal/fisiologia , Interleucina-8/metabolismo , Obesidade/patologia , Adenocarcinoma/imunologia , Adulto , Idoso , Animais , Esôfago de Barrett/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Neoplasias Esofágicas/imunologia , Esôfago/imunologia , Esôfago/patologia , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/imunologia , Organoides , Soro/imunologia , Soro/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
15.
Retrovirology ; 13: 1, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728316

RESUMO

BACKGROUND: HIV-1 integration is prone to a high rate of failure, resulting in the accumulation of unintegrated viral genomes (uDNA) in vivo and in vitro. uDNA can be transcriptionally active, and circularized uDNA genomes are biochemically stable in non-proliferating cells. Resting, non-proliferating CD4 T cells are prime targets of HIV-1 infection and latently infected resting CD4 T cells are the major barrier to HIV cure. Our prior studies demonstrated that uDNA generates infectious virions when T cell activation follows rather than precedes infection. RESULTS: Here, we characterize in primary resting CD4 T cells the dynamics of integrated and unintegrated virus expression, genome persistence and sensitivity to latency reversing agents. Unintegrated HIV-1 was abundant in directly infected resting CD4 T cells. Maximal gene expression from uDNA was delayed compared with integrated HIV-1 and was less toxic, resulting in uDNA enrichment over time relative to integrated proviruses. Inhibiting integration with raltegravir shunted the generation of durable latency from integrated to unintegrated genomes. Latent uDNA was activated to de novo virus production by latency reversing agents that also activated latent integrated proviruses, including PKC activators, histone deacetylase inhibitors and P-TEFb agonists. However, uDNA responses displayed a wider dynamic range, indicating differential regulation of expression relative to integrated proviruses. Similar to what has recently been demonstrated for latent integrated proviruses, one or two applications of latency reversing agents failed to activate all latent unintegrated genomes. Unlike integrated proviruses, uDNA gene expression did not down modulate expression of HLA Class I on resting CD4 T cells. uDNA did, however, efficiently prime infected cells for killing by HIV-1-specific cytotoxic T cells. CONCLUSIONS: These studies demonstrate that contributions by unintegrated genomes to HIV-1 gene expression, virus production, latency and immune responses are inherent properties of the direct infection of resting CD4 T cells. Experimental models of HIV-1 latency employing directly infected resting CD4 T cells should calibrate the contribution of unintegrated HIV-1.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Latência Viral , Replicação Viral , Adulto , Células Cultivadas , DNA Viral/metabolismo , Perfilação da Expressão Gênica , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...