Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39102323

RESUMO

Accurate sleep stage classification is significant for sleep health assessment. In recent years, several machine-learning based sleep staging algorithms have been developed, and in particular, deep-learning based algorithms have achieved performance on par with human annotation. Despite improved performance, a limitation of most deep-learning based algorithms is their black-box behavior, which have limited their use in clinical settings. Here, we propose a cross-modal transformer, which is a transformer-based method for sleep stage classification. The proposed cross-modal transformer consists of a cross-modal transformer encoder architecture along with a multi-scale one-dimensional convolutional neural network for automatic representation learning. The performance of our method is on-par with the state-of-the-art methods and eliminates the black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. Furthermore, our method provides considerable reductions in the number of parameters and training time compared to the state-of-the-art methods. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer. A demo of our work can be found at https://bit.ly/Cross_modal_transformer_demo.


Assuntos
Algoritmos , Aprendizado Profundo , Redes Neurais de Computação , Fases do Sono , Humanos , Fases do Sono/fisiologia , Eletroencefalografia , Aprendizado de Máquina , Polissonografia/métodos , Masculino , Adulto , Feminino
2.
Light Sci Appl ; 12(1): 228, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704619

RESUMO

Limited throughput is a key challenge in in vivo deep tissue imaging using nonlinear optical microscopy. Point scanning multiphoton microscopy, the current gold standard, is slow especially compared to the widefield imaging modalities used for optically cleared or thin specimens. We recently introduced "De-scattering with Excitation Patterning" or "DEEP" as a widefield alternative to point-scanning geometries. Using patterned multiphoton excitation, DEEP encodes spatial information inside tissue before scattering. However, to de-scatter at typical depths, hundreds of such patterned excitations were needed. In this work, we present DEEP2, a deep learning-based model that can de-scatter images from just tens of patterned excitations instead of hundreds. Consequently, we improve DEEP's throughput by almost an order of magnitude. We demonstrate our method in multiple numerical and experimental imaging studies, including in vivo cortical vasculature imaging up to 4 scattering lengths deep in live mice.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 420-423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891323

RESUMO

Hand gesture decoding is a key component of controlling prosthesis in the area of Brain Computer Interface (BCI). This study is concerned with classification of hand gestures, based on Electrocorticography (ECoG) recordings. Recent studies have utilized the temporal information in ECoG signals for robust hand gesture decoding. In our preliminary analysis on ECoG recordings of hand gestures, we observed different power variations in six frequency bands ranging from 4 to 200 Hz. Therefore, the current trend of including temporal information in the classifier was extended to provide equal importance to power variations in each of these frequency bands. Statistical and Principal Component Analysis (PCA) based feature reduction was implemented for each frequency band separately, and classification was performed with a Long Short-Term Memory (LSTM) based neural network to utilize both temporal and spatial information of each frequency band. The proposed architecture along with each feature reduction method was tested on ECoG recordings of five finger flexions performed by seven subjects from the publicly available 'fingerflex' dataset. An average classification accuracy of 82.4% was achieved with the statistical based channel selection method which is an improvement compared to state-of-the-art methods.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Gestos , Humanos , Redes Neurais de Computação , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA