Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695769

RESUMO

Bisphenol A (BPA) is an endocrine disruptor that leaches into food and is significantly employed in food and beverage storage, and source water cycles. To ensure an outstanding and sustainable biosphere while safeguarding human health and well-being, BPA detection is essential, necessitating an efficient detection methodology. Here, we describe an easy-to-use, inexpensive, and overly sensitive electrochemical detector that uses Fe-MOF nanotextures for identifying BPA in groundwater. This sensing electrode device combines the excellent guest interaction potential of organic ligands with the substantial surface area of metal. Using various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD), the structural and physicochemical behaviors of the as-synthesized material were evaluated. Electrochemical BPA detection was enabled by a diffusion-controlled oxidation procedure with a comparable number of both protons and electrons. With a 0.1 µM detection limit, the sensor displayed a linear sensitivity of around 0.1 µM and 15 µM. Additionally, the sensors demonstrated an outstanding recovery with actual water samples as well as a repeatable and steady performance over the course of a month exhibiting minimal interference from typical inorganic and organic species. Due to its notable sensitivity, inexpensive cost, robust selectivity, excellent repeatability, and reuse ability, the electroanalytical possibilities of the Fe-MOF-modified GCE suggest that the device can be implemented into real-world applications in its primed condition.

2.
Analyst ; 149(3): 947-957, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38197180

RESUMO

The construction of a new electrochemical sensing platform based on a copper metal-organic framework (Cu-MOF) heterostructure is described in this paper. Drop-casting Cu-MOF suspension onto the electrode surface primed the sensor for glutathione detection. The composition and morphology of the Cu-MOF heterostructure were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The Cu-MOF heterostructure can identify glutathione (GSH) with an enhanced sensitivity of 0.0437 µA µM-1 at the detection limit (LOD; 0.1 ± 0.005 µM) and a large dynamic range of 0.1-20 µM. Boosting the conductivity and surface area enhances electron transport and promotes redox processes. The constructed sensors were also adequately selective against interference from other contaminants in a similar potential window. Furthermore, the Cu-MOF heterostructure has outstanding selectivity, long-term stability, and repeatability, and the given sensors have demonstrated their capacity to detect GSH with high accuracy (recovery range = 98.2-100.8%) in pharmaceutical samples.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Cobre/química , Estruturas Metalorgânicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Preparações Farmacêuticas , Técnicas Eletroquímicas
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 305: 123483, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37804708

RESUMO

BACKGROUND: Nucleoside polyphosphate (NPP) anions are important for enzymatic activity and should be monitored by scientists in industry and medicine. By elucidating enzyme kinetics and processes, it aids in the discovery of effective inhibitors and activators. Nucleoside polyphosphate (NPP) anions are used by kinases, GTPases, and glycosyltransferases (GTs). Phosphorylation of certain amino acid residues (Ser, Thr, and Tyr) on proteins requires the breakdown of ATP by protein kinases, which produces ADP. Protein kinases, breakdown of ATP, and NPP are the focus of oncology drug development because the aberrant control of kinase activity is a common cause of cancer. RESULTS: However, a discriminative turn-on fluorescent property is exhibited by non-fluorescent p-tertbutylcalix[4]arene modified 1,2,3-triazole containing bis-ruthenium polypyridyl complex (RL) upon the addition of phosphate anions such as (dihydrogen pyrophosphate (H2P2O72-) and dihydrogen phosphate (H2PO4-)) in CH3CN solvent and Adenosine Diphosphate (ADP) in CH3CN/HEPES (pH = 7.4) buffer (9/1, v/v). The probe RL shows a better-recognizing ability with pyrophosphate anion (H2P2O72-) than dihydrogen phosphate anion (H2PO4-). With H2P2O72- and H2PO4- anions, the RL detection limit was calculated to be as low as 83 nM and 198 nM, respectively. SIGNIFICANCE: The calix[4]arene macrocycle's excellent size and binding cone conformation make it a good host-guest interface for the pyrophosphate anion and ADP. The bis-ruthenium polypyridyl complex's connection to the p-tertbutyl calix[4]arene moiety creates the ADP selectivity turn-on sensor. When moving from mono-nuclear to bi-nuclear ruthenium complex anchored on p-tertbutyl calix[4]arene, the probe can differentiate ADP, ATP, and AMP. Furthermore, this platform is a great resource for creating devices to simultaneously assess phosphate anions in environmental samples.


Assuntos
Fosfatos , Rutênio , Fosfatos/química , Difosfatos , Rutênio/química , Nucleosídeos , Ânions/química , Difosfato de Adenosina , Trifosfato de Adenosina , Proteínas Quinases
5.
Molecules ; 28(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067644

RESUMO

Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.


Assuntos
Praguicidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Praguicidas/análise , Monitoramento Ambiental
6.
Materials (Basel) ; 16(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004995

RESUMO

Super-sensitive malathion detection was achieved using a nonenzymatic electrochemical sensor based on a CuO/ZnO-modified glassy carbon electrode (GCE). Due to the high affinity between the Cu element and the sulfur groups in malathion, the developed CuO-ZnO/GCE sensor may bond malathion with ease, inhibiting the redox signal of the Cu element when malathion is present. In addition to significantly increasing the ability of electron transfer, the addition of 3D-flower-like ZnO enhances active sites of the sensor interface for the high affinity of malathion, giving the CuO-ZnO/GCE composite an exceptional level of sensitivity and selectivity. This enzyme-free CuO-ZnO/GCE malathion sensor demonstrates outstanding stability and excellent detection performance under optimal operating conditions with a wide linear range of malathion from 0 to 200 nM and a low detection limit of 1.367 nM. A promising alternative technique for organophosphorus pesticide (OP) determination is offered by the analytical performance of the proposed sensor, and this method can be quickly and sensitively applied to samples that have been contaminated with these pesticides.

7.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513259

RESUMO

Carbon materials with elusive 0D, 1D, 2D, and 3D nanostructures and high surface area provide certain emerging applications in electrocatalytic and photocatalytic CO2 utilization. Since carbon possesses high electrical conductivity, it expels the photogenerated electrons from the catalytic surface and can tune the photocatalytic activity in the visible-light region. However, the photocatalytic efficiency of pristine carbon is comparatively low due to the high recombination of photogenerated carriers. Thus, supporting carbon materials, such as graphene, CNTs (Carbon nanotubes), g-C3N4, MWCNs (Multiwall carbon nanotubes), conducting polymers, and its other simpler forms like activated carbon, nanofibers, nanosheets, and nanoparticles, are usually combined with other metal and non-metal nanocomposites to increase the CO2 absorption and conversion. In addition, carbon-based materials with transition metals and organometallic complexes are also commonly used as photocatalysts for CO2 reduction. This review focuses on developing efficient carbon-based nanomaterials for the photoconversion of CO2 into solar fuels. It is concluded that MWCNs are one of the most used materials as supporting materials for CO2 reduction. Due to the multi-layered morphology, multiple reflections will occur within the layers, thus enhancing light harvesting. In particular, stacked nanostructured hollow sphere morphologies can also help the metal doping from corroding.

8.
Ultrason Sonochem ; 98: 106493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356215

RESUMO

In this article, we studied the effect of acoustic cavitation on the physicochemical and organoleptic parameters, the microstructure of Adyghe cheese made from cow's and goat's milk, and their mixture. The experimental conditions, optimal modes of ultrasonic cavitation treatment of cow and goat milk, and their mixtures are determined. It was found that high-frequency acoustic cavitation improves the physico-chemical and organoleptic indicators of cheese. The 45 kHz mode, with 17 min a processing time, is optimal, improving the microstructure of cheese, organoleptic, physico-chemical indicators.


Assuntos
Queijo , Leite , Feminino , Bovinos , Animais , Leite/química , Cabras , Fenômenos Químicos , Acústica
9.
RSC Adv ; 13(15): 9978-9982, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006347

RESUMO

Bismuth-based perovskites are an important class of materials in the fabrication of lead-free perovskite solar cells. Bi-based Cs3Bi2I9 and CsBi3I10 perovskites are getting much attention due to their appropriate bandgap values of 2.05 eV and 1.77 eV, respectively. However, the device optimisation process plays a key role in controlling the film quality and the performance of perovskite solar cells. Hence, a new strategy to improve crystallization as well as the thin film quality is equally important to develop efficient perovskite solar cells. Herein, an attempt was made to prepare the Bi-based Cs3Bi2I9 and CsBi3I10 perovskites via the ligand-assisted re-precipitation approach (LARP). The physical, structural, and optical properties were investigated on perovskite films deposited by the solution process for solar cell applications. Cs3Bi2I9 and CsBi3I10-based perovskite-based solar cells were fabricated using the device architecture of ITO/NiO x /perovskite layer/PC61BM/BCP/Ag. The device fabricated with CsBi3I10 showed the best power conversion efficiency (PCE) of 2.3% with an improved fill factor (FF) of 69%, V OC of 0.79 V, and J SC of 4.2 mA cm-2 compared to the Cs3Bi2I9-based device which showed a PCE of 0.7% with a FF of 47%, V OC of 0.62 V and J SC of 2.4 mA cm-2.

10.
Environ Res ; 229: 115940, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080276

RESUMO

Long-term exposure to the highly toxic heavy metal arsenic can harm ecological systems and pose serious health risks to humans. Arsenic pollutant in water and the food chain must be addressed, and active prompt detection of As(III) is essential. The development of an effective detection method for As(III) ions is urgently needed to slow the alarming growth of arsenic pollution in the environment and safeguard the well-being of future generations. This study presents the results of our exhaustive investigation into cubic CsPbBr3 single crystals, the glassy carbon (GC) electrode modification with CsPbBr3 single crystals prepared by direct solvent evaporation, as well as our observations of the material's remarkable electrocatalytic properties and exceptional anti-interference sensing of As(III) ions in neutral pH media. The developed CsPbBr3/GC is exceptionally useful for the ultra-sensitive and specific identification of arsenic in water, exhibiting a detection limit of 0.381 µmol/L, a rapid response across a defined range of 0.1-25 µmol/L, and an ultra-sensitivity of 0.296 µA/µmolL-1. CsPbBr3/GCE (prepared without a specific reagent) is superior to other modified electrodes used as sensors in electrocatalytic activity, detection limit, analytical sensitivity, and stability response.


Assuntos
Arsênio , Humanos , Limite de Detecção , Arsênio/análise , Substâncias Perigosas , Técnicas Eletroquímicas/métodos , Água , Carbono/química
11.
Environ Sci Pollut Res Int ; 30(18): 52895-52905, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36843160

RESUMO

The use of new natural dyes derived from Leucophyllum frutescens and Ehretia microphylla as well as their combination in dye-sensitized solar cells (DSSCs) has been explored for the first time in the current work. The primary pigments that sensitize the semiconductor TiO2 films were found to be carotenoid, anthocyanin, and chlorophyll. Pigments from Leucophyllum frutescens and Ehretia microphylla were designated as LF and EM, and their mixture blended at volume percent of 50:50, 75:25, and 25:75 were labeled as LE1, LE2, and LE3, respectively. The absorption range, emission intensities, and the functional groups of the dyes and dye-loaded TiO2 photo-anode films were analyzed using ultraviolet-visible, photoluminescence and Fourier transform infrared spectroscopy. The surface morphology of bare and sensitized TiO2 films was identified through scanning electron microscopy (SEM). To evaluate the photovoltaic performance of the fabricated devices, the current-voltage characteristics, electrochemical impedance spectroscopy analysis and incident photon-to-current conversion efficiency measurements were performed. The study found that the co-sensitized cell LE2 outperformed both single and mixed dye-based cells, achieving a maximum conversion efficiency of 1.33% with a Voc of 516 mV and a Jsc of 2.55 mA cm-2. This synergetic effect of natural dyes proved the superior performance of DSSCs with co-sensitization.


Assuntos
Corantes , Energia Solar , Corantes/química , Titânio/química , Antocianinas
12.
Polymers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236130

RESUMO

Various studies have been conducted in recent years to find solutions to the issues in wind energy conversion systems. A 100W horizontal axis micro wind turbine is built for low wind speed applications in this work. The Blade Element Momentum theory approach was used to design the 100W micro wind turbine blade. The wind turbine blade 3D model was created using the CREO CAD 3.0 software. Based on the aerodynamic studies, the airfoil S9000 is chosen among others for generating high power at low wind speed. The density, Young's modulus, and the Poisson ratio of the proposed wind turbine blade model with acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) materials were compared. ABS and PLA materials were investigated using a 0.33 mm layer of infill ranging from 10% to 100%. PLA and ABS output values were compared in terms of deformation, equivalent stress, and equivalent strain. PLA materials, on the other hand, have less deformation and greater structural properties than ABS materials. The wind blade structural analysis was performed in ANSYS 15 software, and the details of experimental and simulated results are presented in this paper.

13.
Analyst ; 147(17): 3894-3907, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35894943

RESUMO

Here, a scheme that aptly describes the reduction of gold nanoparticles' crystalline size on the surface of MWCNTs in an aqueous phase to generate a LAMWCNT-Au heterostructure, employing an Nd:YAG laser (energy = 505 mJ and λ = 1064 nm) is developed. Such a LAMWCNT-Au heterostructure results in the development of an easy electrochemical procedure based on voltammetry analysis for ultra-sensitive glutathione sensing. High-resolution transmission electron microscopy, UV-visible spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were used to examine the composition and morphology of laser-ablated adhesion of AuNPs over the MWCNT heterostructure. With a wide dynamic range of 0.1-9 µmol L-1, the LAMWCNT-Au heterostructure can detect glutathione with a high sensitivity of 0.1186 µA (µmol L-1)-1 at the low limit of detection (LLOD; 0.93 µmol L-1). It improves electron transfer and promotes redox reactions by increasing the conductivity and surface area. The findings show that the fabricated LAMWCNT-Au/GCE is an effortless and potent biosensing prototype for the identification of glutathione (GSH) at a negative potential in a neutral medium. The substantial synergistic surface impact produced by the introduction of AuNPs over MWCNTs exhibits exceptional electrocatalytic activity in comparison with individual MWCNT and AuNP. Moreover, the LAMWCNT-Au heterostructure has excellent selectivity, long-term stability, and reproducibility, and it can easily separate target molecules that were identified using various voltammetric analyses.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Glutationa , Ouro/química , Lasers , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
15.
Ultrason Sonochem ; 85: 105988, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344863

RESUMO

Ultrasound induced cavitation (acoustic cavitation) process is found useful in various applications. Scientists from various disciplines have been exploring the fundamental aspects of acoustic cavitation processes over several decades. It is well documented that extreme localised temperature and pressure conditions are generated when a cavitation bubble collapses. Several experimental techniques have also been developed to estimate cavitation bubble temperatures. Depending upon specific experimental conditions, light emission from cavitation bubbles is observed, referred to as sonoluminescence. Sonoluminescence studies have been used to develop a fundamental understanding of cavitation processes in single and multibubble systems. This minireview aims to provide some highlights on the development of basic understandings of acoustic cavitation processes using cavitation bubble temperature, sonoluminescence and interfacial chemistry over the past 2-3 decades.


Assuntos
Acústica , Temperatura
16.
Ultrason Sonochem ; 83: 105921, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066331

RESUMO

To acquire substantial electrochemical signals of guanine-GUA and adenine-ADE present in deoxyribonucleic acid-DNA, it is critical to investigate innovative electrode materials and their interfaces. In this study, gold-loaded boron-doped graphene quantum dots (Au@B-GQDs) interface was prepared via ultrasound-aided reduction method for monitoring GUA and ADE electrochemically. Transmission electron microscopy-TEM, Ultraviolet-Visible spectroscopy-UV-Vis, Raman spectroscopy, X-ray photoelectron spectroscopy-XPS, cyclic voltammetry-CV, and differential pulse voltammetry-DPV were used to examine the microstructure of the fabricated interfaceand demonstrate its electrochemical characteristics. The sensor was constructed by depositing the as-prepared Au@B-GQDs as a thin layer on a glassy carbon-GC electrode by the drop-casting method and carried out the electrochemical studies. The resulting sensor exhibited a good response with a wide linear range (GUA = 0.5-20 µM, ADE = 0.1-20 µM), a low detection limit-LOD (GUA = 1.71 µM, ADE = 1.84 µM), excellent sensitivity (GUA = 0.0820 µAµM-1, ADE = 0.1561 µAµM-1) and selectivity with common interferents results from biological matrixes. Furthermore, it seems to have prominentselectivity, reproducibility, repeatability, and long-lastingstability. The results demonstrate that the fabricated Au@B-GQDs/GC electrode is a simple and effective sensing platform for detecting GUA and ADE in neutral media at low potential as it exhibited prominent synergistic impact and outstanding electrocatalytic activity corresponding to individual AuNPs and B-GQDs modified electrodes.


Assuntos
Grafite , Nanopartículas Metálicas , Pontos Quânticos , Adenina , Boro , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Grafite/química , Guanina , Nanopartículas Metálicas/química , Pontos Quânticos/química , Reprodutibilidade dos Testes
17.
Ultrason Sonochem ; 82: 105868, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34902816

RESUMO

Glutathione (GSH) is the most abundant antioxidant in the majority of cells and tissues; and its use as a biomarker has been known for decades. In this study, a facile electrochemical method was developed for glutathione sensing using voltammetry and amperometry analyses. In this study, a novel glassy carbon electrode composed of graphene quantum dots (GQDs) embedded on amine-functionalized silica nanoparticles (SiNPs) was synthesized. GQDs embedded on amine-functionalized SiNPs were physical-chemically characterized by different techniques that included high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), UV-visible spectroscopy, Fourier-transform infrared spectroscopy(FTIR), and Raman spectroscopy. The newly developed electrode exhibits a good response to glutathione with a wide linear range (0.5-7 µM) and a low detection limit (0.5 µM) with high sensitivity(2.64 µA µM-1). The fabricated GQDs-SiNPs/GC electrode shows highly attractive electrocatalytic activity towards glutathione detection in the neutral media at low potential due to a synergistic surface effect caused by the incorporation of GQDs over SiNPs. It leads to higher surface area and conductivity, improving electron transfer and promoting redox reactions. Besides, it provides outstanding selectivity, reproducibility, long-term stability, and can be used in the presence of interferences typically found in real sample analysis.


Assuntos
Pontos Quânticos , Aminas , Glutationa , Grafite , Limite de Detecção , Reprodutibilidade dos Testes , Dióxido de Silício , Ultrassom
18.
Ultrason Sonochem ; 80: 105824, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763211

RESUMO

To harvest the photon energy, a sequenceof perovskite-type oxides of LaCoxFe1-xO3 (0 ≤x≤1) nanostructures with distinct 'Cobalt' doping at the position of B-site are successfully prepared via a simple ultrasonic approach as photocatalyst. The crystallinity, phase identification, microstructure, and morphology of perovskite nanocomposites were analyzed to better understand their physicochemical properties. The catalytic efficiency was assessedusing Congo Red (CR) dye by visible light irradiation for 30 min. Applying terephthalic acid as a probe molecule, the formation of hydroxyl radicals during the processes was investigated. The photocatalytic efficacy was measured by varying different Co/Fe stoichiometric molar ratios and noticed the order of sequence is 0.2 > 0.6 > 0.4 > 0.8 > 0.5 > 0 > 1 after 30 min of reaction time. Finally using LaCo0.2Fe0.8O3 nanostructures, cycling studies (n = 3) were performed to determine its photostability and reusability. The photocatalytic methodology proposed in this study was discussed extensively.

19.
Ultrason Sonochem ; 75: 105585, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34087757

RESUMO

MgTi2O5 (magnesium dititanate) nanoparticles were prepared by a simple hydrothermal assisted post-annealing method and characterized with various analytical techniques. The catalytic properties (sonocatalytic, photocatalytic and sonophotocatalytic activity) were evaluated using the degradation of triphenylmethane dyes (crystal violet, basic fuchsin, and acid fuchsin). The sonophotocatalytic activity of MgTi2O5 nanoparticles towards crystal violet was found to be ~2.9 times higher than the photocatalytic activity and ~20 times higher than that of the sonocatalytic processes. In addition, the sonophotocatalytic efficiency of MgTi2O5 nanoparticles was found to be remarkable for the degradation of basic fuchsin (cationic dye) and acid fuchsin (anionic dye). The mechanism of these catalytic activities has been discussed in detail.

20.
Environ Technol ; : 1-11, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34057402

RESUMO

Polymers are highly promising materials for capturing carbon dioxide (CO2), a greenhouse gas. Hence in this work, we prepared phyllosilicate supported mesoporous polymer via reversible addition-fragmentation chain transfer (RAFT) polymerisation, which is the one among the controlled radical polymerisation. The mesoporous material anchored on dodecanethiol trithiocarbonate acts as a chain transfer agent (CTA) for the polymerisation of chloromethyl styrene and further conversion to quaternary ammonium compound which is effective to trap CO2 using tertiary amine. The synthesised porous phyllosilicate/polymer nanocomposites have been characterised by using various analytical tools. The CO2 sorption experiments were carried out by passing CO2 onto the synthesised porous phyllosilicate/polymer nanocomposites. The sorption kinetics was monitored by X-Ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) spectra in the presence of carbonate were obtained by reaction of quaternary ammonium hydroxide and CO2. The phyllosilicate anchored macromolecular CTA (macro-CTA) and the surface-initiated polymer nanocomposites encompassed apparent surface areas of 94.5 and 26.8 m2 g-1, respectively. In addition, the total pore volumes calculated for the macro-CTA and polymer were found to be 0.27 and 0.095 cm3g-1, while the average pore sizes were 14.24 and 11.46 nm, respectively. The CO2 sorption capacity of the phyllosilicate/polymer nanocomposites, monitored at different temperatures, is the fastest for 25°C but slower for the sample treated at 50°C which may due to the dipole and quadrupole interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...