Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 120(29): e2305764120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428932

RESUMO

Alopecia areata (AA) is among the most prevalent autoimmune diseases, but the development of innovative therapeutic strategies has lagged due to an incomplete understanding of the immunological underpinnings of disease. Here, we performed single-cell RNA sequencing (scRNAseq) of skin-infiltrating immune cells from the graft-induced C3H/HeJ mouse model of AA, coupled with antibody-based depletion to interrogate the functional role of specific cell types in AA in vivo. Since AA is predominantly T cell-mediated, we focused on dissecting lymphocyte function in AA. Both our scRNAseq and functional studies established CD8+ T cells as the primary disease-driving cell type in AA. Only the depletion of CD8+ T cells, but not CD4+ T cells, NK, B, or γδ T cells, was sufficient to prevent and reverse AA. Selective depletion of regulatory T cells (Treg) showed that Treg are protective against AA in C3H/HeJ mice, suggesting that failure of Treg-mediated immunosuppression is not a major disease mechanism in AA. Focused analyses of CD8+ T cells revealed five subsets, whose heterogeneity is defined by an "effectorness gradient" of interrelated transcriptional states that culminate in increased effector function and tissue residency. scRNAseq of human AA skin showed that CD8+ T cells in human AA follow a similar trajectory, underscoring that shared mechanisms drive disease in both murine and human AA. Our study represents a comprehensive, systematic interrogation of lymphocyte heterogeneity in AA and uncovers a novel framework for AA-associated CD8+ T cells with implications for the design of future therapeutics.


Assuntos
Alopecia em Áreas , Camundongos , Humanos , Animais , Alopecia em Áreas/genética , Alopecia em Áreas/tratamento farmacológico , Camundongos Endogâmicos C3H , Subpopulações de Linfócitos , Análise de Sequência de RNA
3.
Immunity ; 56(6): 1239-1254.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37028427

RESUMO

Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b+ type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells. CD301b+ DC2 were enriched for phagocytosis and maturation programs, while also expressing tolerogenic markers. In both human and murine skin, these signatures were reinforced by microbial uptake. In contrast to their adult counterparts or other early-life DC subsets, neonatal CD301b+ DC2 highly expressed the retinoic-acid-producing enzyme, RALDH2, the deletion of which limited commensal-specific Treg cell generation. Thus, synergistic interactions between bacteria and a specialized DC subset critically support early-life tolerance at the cutaneous interface.


Assuntos
Células Dendríticas , Pele , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Tolerância Imunológica , Aldeído Oxirredutases/metabolismo
5.
Nat Immunol ; 24(4): 664-675, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849745

RESUMO

Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.


Assuntos
Vasos Linfáticos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Receptores CXCR4/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Vasos Linfáticos/metabolismo , Imunoterapia
6.
Cancer Cell ; 40(5): 524-544.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537413

RESUMO

There is a need for better classification and understanding of tumor-infiltrating lymphocytes (TILs). Here, we applied advanced functional genomics to interrogate 9,000 human tumors and multiple single-cell sequencing sets using benchmarked T cell states, comprehensive T cell differentiation trajectories, human and mouse vaccine responses, and other human TILs. Compared with other T cell states, enrichment of T memory/resident memory programs was observed across solid tumors. Trajectory analysis of single-cell melanoma CD8+ TILs also identified a high fraction of memory/resident memory-scoring TILs in anti-PD-1 responders, which expanded post therapy. In contrast, TILs scoring highly for early T cell activation, but not exhaustion, associated with non-response. Late/persistent, but not early activation signatures, prognosticate melanoma survival, and co-express with dendritic cell and IFN-γ response programs. These data identify an activation-like state associated to poor response and suggest successful memory conversion, above resuscitation of exhaustion, is an under-appreciated aspect of successful anti-tumoral immunity.


Assuntos
Linfócitos do Interstício Tumoral , Melanoma , Animais , Linfócitos T CD8-Positivos , Diferenciação Celular , Humanos , Melanoma/genética , Melanoma/terapia , Camundongos , Receptor de Morte Celular Programada 1
7.
J Invest Dermatol ; 142(3 Pt B): 951-959, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34844731

RESUMO

Immune checkpoint blockade has revolutionized the treatment of multiple tumor types, including melanoma and nonmelanoma skin cancers. The use of immune checkpoint blockade is curtailed by tissue toxicities termed immune-related adverse events (irAEs), which occur most quickly and most often in the skin. We review the rationale for immune checkpoint blockade use, current agents, use in skin cancers, autoimmune manifestations in the skin, and considerations for predictive biomarkers and treatment options on the basis of skin pathogenesis. We also highlight major gaps in the field and the lack of preclinical modeling in the skin. A deeper understanding of irAE pathophysiology may help to uncouple toxicity and efficacy but mandates an interdisciplinary approach, including foundational skin immunology and autoimmune pathogenesis.


Assuntos
Melanoma , Neoplasias , Neoplasias Cutâneas , Biomarcadores , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico
8.
Cancer Res ; 81(23): 5977-5990, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642183

RESUMO

The relationship between cancer and autoimmunity is complex. However, the incidence of solid tumors such as melanoma has increased significantly among patients with previous or newly diagnosed systemic autoimmune disease (AID). At the same time, immune checkpoint blockade (ICB) therapy of cancer induces de novo autoinflammation and exacerbates underlying AID, even without evident antitumor responses. Recently, systemic lupus erythematosus (SLE) activity was found to drive myeloid-derived suppressor cell (MDSC) formation in patients, a known barrier to healthy immune surveillance and successful cancer immunotherapy. Cross-talk between MDSCs and macrophages generally drives immune suppressive activity in the tumor microenvironment. However, it remains unclear how peripheral pregenerated MDSC under chronic inflammatory conditions modulates global macrophage immune functions and the impact it could have on existing tumors and underlying lupus nephritis. Here we show that pathogenic expansion of SLE-generated MDSCs by melanoma drives global macrophage polarization and simultaneously impacts the severity of lupus nephritis and tumor progression in SLE-prone mice. Molecular and functional data showed that MDSCs interact with autoimmune macrophages and inhibit cell surface expression of CD40 and the production of IL27. Moreover, low CD40/IL27 signaling in tumors correlated with high tumor-associated macrophage infiltration and ICB therapy resistance both in murine and human melanoma exhibiting active IFNγ signatures. These results suggest that preventing global macrophage reprogramming induced by MDSC-mediated inhibition of CD40/IL27 signaling provides a precision melanoma immunotherapy strategy, supporting an original and advantageous approach to treat solid tumors within established autoimmune landscapes. SIGNIFICANCE: Myeloid-derived suppressor cells induce macrophage reprogramming by suppressing CD40/IL27 signaling to drive melanoma progression, simultaneously affecting underlying autoimmune disease and facilitating resistance to immunotherapy within preexisting autoimmune landscapes.


Assuntos
Autoimunidade , Antígenos CD40/metabolismo , Interleucina-27/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Macrófagos/patologia , Melanoma/patologia , Células Supressoras Mieloides/patologia , Animais , Imunoterapia , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral
10.
Semin Immunol ; 52: 101481, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34023170

RESUMO

Dendritic cells (DC) are key sentinels of the host immune response with an important role in linking innate and adaptive immunity and maintaining tolerance. There is increasing recognition that DC are critical determinants of initiating and sustaining effective T-cell-mediated anti-tumor immune responses. Recent progress in immuno-oncology has led to the evolving insight that the presence and function of DC within the tumor microenvironment (TME) may dictate efficacy of cancer immunotherapies as well as conventional cancer therapies, including immune checkpoint blockade, radiotherapy and chemotherapy. As such, improved understanding of dendritic cell immunobiology specifically focusing on their role in T-cell priming, migration into tissues and TME, and the coordinated in vivo responses of functionally specialized DC subsets will facilitate a better mechanistic understanding of how tumor-immune surveillance can be leveraged to improve patient outcomes and to develop novel DC-targeted therapeutic approaches.


Assuntos
Células Dendríticas , Neoplasias , Imunidade Adaptativa , Humanos , Imunoterapia , Neoplasias/terapia , Microambiente Tumoral
11.
Nature ; 595(7865): 114-119, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915568

RESUMO

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Atlas como Assunto , Autopsia , COVID-19/imunologia , Estudos de Casos e Controles , Feminino , Fibroblastos/patologia , Fibrose/patologia , Fibrose/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Macrófagos/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Linfócitos T/imunologia
12.
Cancer Cell ; 39(5): 610-631, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33545064

RESUMO

There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.


Assuntos
Modelos Animais de Doenças , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Microambiente Tumoral/imunologia , Animais , Humanos , Imunidade/imunologia , Imunoterapia/métodos , Melanoma/patologia , Neoplasias Cutâneas/patologia
13.
Methods Enzymol ; 632: 417-430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000908

RESUMO

APCs play a key role at initiating adaptive immune responses by presenting antigens to lymphocytes and DCs are professional APCs. It is critical to understand the differential antigen capture and presentation ability of different DC subsets, which is important for DC-targeted immunotherapy. In this section, we give a brief introduction to different antigen presentation pathways and introduce the key concept of cross-presentation, the major antigen presentation pathway used for anti-viral and anti-tumoral immune responses. CD205, a DC restricted receptor, is highly expressed on certain DCs subsets. We find CD205-mediated antigen uptake to be a useful model for studying antigen uptake and defects. These methods provide an introduction to CD205-mediated pre-clinical delivery of antigens to cross-presenting DCs, which can be adapted to the study of targeting to multiple receptors and other C-type lectins. This is a promising strategy to detect the antigen capture capacity and to study the key players orchestrating tolerance and immunity ex vivo.


Assuntos
Anticorpos/imunologia , Apresentação de Antígeno , Células Dendríticas/imunologia , Imunidade Adaptativa , Animais , Antígenos CD/imunologia , Apresentação Cruzada , Endocitose , Humanos , Lectinas Tipo C/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia
14.
Nature ; 571(7764): 270-274, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207604

RESUMO

Tumour-specific CD8 T cell dysfunction is a differentiation state that is distinct from the functional effector or memory T cell states1-6. Here we identify the nuclear factor TOX as a crucial regulator of the differentiation of tumour-specific T (TST) cells. We show that TOX is highly expressed in dysfunctional TST cells from tumours and in exhausted T cells during chronic viral infection. Expression of TOX is driven by chronic T cell receptor stimulation and NFAT activation. Ectopic expression of TOX in effector T cells in vitro induced a transcriptional program associated with T cell exhaustion. Conversely, deletion of Tox in TST cells in tumours abrogated the exhaustion program: Tox-deleted TST cells did not upregulate genes for inhibitory receptors (such as Pdcd1, Entpd1, Havcr2, Cd244 and Tigit), the chromatin of which remained largely inaccessible, and retained high expression of transcription factors such as TCF-1. Despite their normal, 'non-exhausted' immunophenotype, Tox-deleted TST cells remained dysfunctional, which suggests that the regulation of expression of inhibitory receptors is uncoupled from the loss of effector function. Notably, although Tox-deleted CD8 T cells differentiated normally to effector and memory states in response to acute infection, Tox-deleted TST cells failed to persist in tumours. We hypothesize that the TOX-induced exhaustion program serves to prevent the overstimulation of T cells and activation-induced cell death in settings of chronic antigen stimulation such as cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Homeodomínio/genética , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Neoplasias/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Transcrição Gênica
15.
PLoS One ; 13(9): e0203672, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30265680

RESUMO

Hidradenitis suppurativa (HS) is a chronic skin disease of the pilo-sebaceous apocrine unit characterized by significant inflammation and an impaired quality of life. The pathogenesis of HS remains unclear. To determine the HS skin and blood transcriptomes and HS blood proteome, patient data from previously published studies were analysed and integrated from a cohort of patients with moderate to severe HS (n = 17) compared to healthy volunteers (n = 10). The analysis utilized empirical Bayes methods to determine differentially expressed genes (DEGs) (fold change (FCH) >2.0 and false discovery rate (FDR) <0.05), and differentially expressed proteins (DEPs) (FCH>1.5, FDR<0.05). In the HS skin transcriptome (lesional skin compared to non-lesional skin), there was an abundance of immunoglobulins, antimicrobial peptides, and an interferon signature. Gene-sets related to Notch signalling and Interferon pathways were differentially activated in lesional compared to non-lesional skin. CIBERSORT analysis of the HS skin transcriptome revealed a significantly increased proportion of plasma cells in lesional skin. In the HS skin and blood transcriptomes and HS blood proteome, gene-sets related to the complement system changed significantly (FDR<0.05), with dysregulation of complement-specific DEGs and DEPs. These data point towards an exaggerated immune response in lesional skin that may be responding to commensal cutaneous bacterial presence and raise the possibility that this may be an important driver of HS disease progression.


Assuntos
Hidradenite Supurativa/genética , Proteoma , Transcriptoma , Teorema de Bayes , Sangue/metabolismo , Regulação da Expressão Gênica , Hidradenite Supurativa/metabolismo , Humanos , Transdução de Sinais/genética , Pele/metabolismo
16.
Cancer Immunol Res ; 6(6): 723-732, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29669721

RESUMO

Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here, we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of pparg in lysozyme M (LysM)-expressing myeloid cells (KO) showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered DC responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF-stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Cancer Immunol Res; 6(6); 723-32. ©2018 AACR.


Assuntos
Vacinas Anticâncer/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Neoplasias/imunologia , Neoplasias/metabolismo , PPAR gama/metabolismo , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunomodulação , Imunoterapia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Melanoma Experimental , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento
17.
J Invest Dermatol ; 137(9): 1826-1828, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28843293

RESUMO

T follicular helper cells contribute to the development of long-lasting humoral immunity by germinal center formation. Somatic hypermutation and affinity maturation take place in germinal centers leading to the generation of memory B cells and plasma cells. As such, T follicular helper cells impact immunodeficiencies, autoimmunity, and cancer. This necessitates further understanding of how T follicular helper cells are regulated in health and disease. The current study by Levin et al. builds on prior work to further substantiate a critical role for skin migratory dendritic cells and in particular Langerhans cells at governing T follicular helper and germinal center formation after intradermal immunization with HIV p24-coated polylactic acid nanoparticles.


Assuntos
Células Dendríticas/imunologia , Centro Germinativo/imunologia , Imunidade Humoral/fisiologia , Células de Langerhans/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/imunologia , Feminino , Humanos , Imunização/métodos , Células de Langerhans/citologia , Ativação Linfocitária/imunologia , Masculino , Sensibilidade e Especificidade , Linfócitos T Auxiliares-Indutores/imunologia
18.
Cell ; 170(1): 127-141.e15, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666115

RESUMO

Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment.


Assuntos
Interferon gama/imunologia , Melanoma/imunologia , Monócitos/imunologia , Metástase Neoplásica/patologia , Neoplasias Cutâneas/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Microambiente Tumoral , Animais , Diferenciação Celular , Células Dendríticas/imunologia , Homeostase , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Monócitos/patologia , Análise de Sequência de RNA , Análise de Célula Única , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma
19.
J Immunol ; 199(4): 1319-1332, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28710250

RESUMO

Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang+ and CD11b-Lang- subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine.


Assuntos
Células Dendríticas/imunologia , Vacinas contra Influenza/imunologia , Raios Infravermelhos , Lasers , Pele/imunologia , Pele/efeitos da radiação , Vacinação/métodos , Adjuvantes Imunológicos , Animais , Antígenos de Superfície/metabolismo , Movimento Celular , Células Dendríticas/fisiologia , Vacinas contra Influenza/administração & dosagem , Injeções Intradérmicas , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Camundongos , Receptores CCR2/genética , Receptores CCR2/metabolismo
20.
Semin Immunopathol ; 39(2): 137-152, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27888331

RESUMO

Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Tolerância Imunológica , Animais , Apresentação de Antígeno/imunologia , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Diferenciação Celular , Apresentação Cruzada/imunologia , Citocinas/metabolismo , Células Dendríticas/classificação , Células Dendríticas/citologia , Regulação da Expressão Gênica , Fatores de Crescimento de Células Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Humanos , Imunomodulação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Especificidade de Órgãos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...