Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401634, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718317

RESUMO

Superoxido copper complexes play an important role as usually short-lived intermediates in biology and chemistry. The unusual stability of an end-on superoxido copper complex observed in an oxygen-enhanced atom transfer radical polymerization (ATRP) led to a detailed mechanistic investigation of the formation of [CuII(Me6tren)(O2•-)]+ (Me6tren = tris(2-dimethyl-aminoethyl)amine) under ambient conditions. The persistence of the superoxido copper complex could be explained by a reaction cycle including the peroxido complex [(Me6tren)2CuII2(O2)]2+ together with [CuI(Me6tren)(DMSO)]+ and [CuII(Me6tren)(OH)]+ in the overall reaction.

2.
RSC Appl Polym ; 2(2): 275-283, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38525379

RESUMO

Chemical recycling of polymers is one of the biggest challenges in materials science. Recently, remarkable achievements have been made by utilizing polymers prepared by controlled radical polymerization to trigger low-temperature depolymerization. However, in the case of atom transfer radical polymerization (ATRP), depolymerization has nearly exclusively focused on chlorine-terminated polymers, even though the overwhelming majority of polymeric materials synthesized with this method possess a bromine end-group. Herein, we report an efficient depolymerization strategy for bromine-terminated polymethacrylates which employs an inexpensive and environmentally friendly iron catalyst (FeBr2/L). The effect of various solvents and the concentration of metal salt and ligand on the depolymerization are judiciously explored and optimized, allowing for a depolymerization efficiency of up to 86% to be achieved in just 3 minutes. Notably, the versatility of this depolymerization is exemplified by its compatibility with chlorinated and non-chlorinated solvents, and both Fe(ii) and Fe(iii) salts. This work significantly expands the scope of ATRP materials compatible with depolymerization and creates many future opportunities in applications where the depolymerization of bromine-terminated polymers is desired.

3.
Chem Sci ; 15(13): 5019-5026, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550686

RESUMO

The synthesis of multiblock copolymers has emerged as an efficient tool to not only reveal the optimal way to access complex structures and investigate polymer properties but also to ascertain the end-group fidelity of a given polymerization methodology. Although reversible addition-fragmentation chain-transfer (RAFT) polymerization is arguably the most dominant strategy employed, its success is often hampered by the unavoidable and excessive use of radical initiators which results in increased termination and loss of end-group fidelity. In this work, we employ acid in RAFT polymerization to enhance the synthesis of multiblock copolymers. By the addition of a small amount of acid, a 4-fold decrease in the overall required radical initiator concentration was achieved, enabling the synthesis of a range of well-defined multiblock copolymers with various degrees of polymerization (DP) per block. The acid enhances the propagation rate, minimizing the initiator concentration. In all cases, near-quantitative monomer conversion was obtained (>97%) for every iterative block formation step. Notably, and in contrast to conventional RAFT approaches, the tailing to low molecular weight was significantly suppressed and the dispersity was maintained nearly constant (i.e. in most cases D = 1.1-1.2), thus indicating minor termination events and side reactions during acid-enhanced synthesis. The possibility to synthesize multiblocks consisting of methacrylates, acrylates, and acrylamides was also demonstrated. This work presents an advancement in the synthesis of well-defined multiblock copolymers and more broadly, RAFT polymers with high end-group fidelity.

4.
Angew Chem Int Ed Engl ; 63(19): e202402436, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38466624

RESUMO

Photocatalytic upcycling and depolymerization of vinyl polymers have emerged as promising strategies to combat plastic pollution and promote a circular economy. This mini review critically summarizes current developments in the upcycling and degradation of vinyl polymers including polystyrene and poly(meth)acrylates. Of these material classes, polymethacrylates possess the unique possibility to undergo a photocatalytic depolymerization back to monomer under thermodynamically favourable conditions, thus presenting significant advantages over traditional thermal strategies. Our perspective on current formidable challenges and potential future directions are also discussed.

5.
Angew Chem Int Ed Engl ; 63(21): e202315200, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38546541

RESUMO

Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.

6.
Chem Sci ; 15(7): 2665-2667, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362418

RESUMO

[This corrects the article DOI: 10.1039/D3SC05143A.].

7.
Chem Sci ; 15(3): 832-853, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239674

RESUMO

Depolymerization is potentially a highly advantageous method of recycling plastic waste which could move the world closer towards a truly circular polymer economy. However, depolymerization remains challenging for many polymers with all-carbon backbones. Fundamental understanding and consideration of both the kinetics and thermodynamics are essential in order to develop effective new depolymerization systems that could overcome this problem, as the feasibility of monomer generation can be drastically altered by tuning the reaction conditions. This perspective explores the underlying thermodynamics and kinetics governing radical depolymerization of addition polymers by revisiting pioneering work started in the mid-20th century and demonstrates its connection to exciting recent advances which report depolymerization reaching near-quantitative monomer regeneration at much lower temperatures than seen previously. Recent catalytic approaches to monomer regeneration are also explored, highlighting that this nascent chemistry could potentially revolutionize depolymerization-based polymer recycling in the future.

8.
Chimia (Aarau) ; 77(4): 217-220, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047799

RESUMO

Reversing controlled radical polymerization and regenerating the monomer has been a long-standing challenge for fundamental research and practical applications. Herein, we report a highly efficient depolymerization method for various polymethacrylates synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The depolymerization process, which does not require any catalyst, exhibits near-quantitative conversions of up to 92%. The key aspect of our approach is the utilization of the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of the polymethacrylates. The depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. Our depolymerization strategy offers a promising route towards the development of sustainable and efficient recycling methods for complex polymer materials.

9.
Chem Sci ; 14(46): 13419-13428, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033899

RESUMO

Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.

10.
Angew Chem Int Ed Engl ; 62(45): e202313232, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37814385

RESUMO

A photocatalytic RAFT-controlled radical depolymerization method is introduced for precisely conferring temporal control under visible light irradiation. By regulating the deactivation of the depropagating chains and suppressing thermal initiation, an excellent temporal control was enabled, exemplified by several consecutive "on" and "off" cycles. Minimal, if any, depolymerization could be observed during the dark periods while the polymer chain-ends could be efficiently re-activated and continue to depropagate upon re-exposure to light. Notably, favoring deactivation resulted in the gradual unzipping of polymer chains and a stepwise decrease in molecular weight over time. This synthetic approach constitutes a simple methodology to modulate temporal control during the chemical recycling of RAFT-synthesized polymers while offering invaluable mechanistic insights.

11.
J Am Chem Soc ; 145(39): 21146-21151, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37737835

RESUMO

A photocatalytic ATRP depolymerization is introduced that significantly suppresses the reaction temperature from 170 to 100 °C while enabling temporal regulation. In the presence of low-toxicity iron-based catalysts and under visible light irradiation, near-quantitative monomer recovery could be achieved (up to 90%), albeit with minimal temporal control. By employing ppm concentrations of either FeCl2 or FeCl3, the depolymerization during the dark periods could be completely eliminated, thus enabling temporal control and the possibility to modulate the rate by simply turning the light "on" and "off". Notably, our approach allowed preservation of the end-group fidelity throughout the reaction, could be carried out at high polymer loadings (up to 2M), and was compatible with various polymers and light sources. This methodology provides a facile, environmentally friendly, and temporally regulated route to chemically recycle ATRP-synthesized polymers, thus opening the door for further opportunities.

12.
ACS Macro Lett ; 12(9): 1207-1212, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37615956

RESUMO

Thermal RAFT depolymerization has recently emerged as a promising methodology for the chemical recycling of polymers. However, while much attention has been given to the regeneration of monomers, the fate of the RAFT end-group after depolymerization has been unexplored. Herein, we identify the dominant small molecules derived from the RAFT end-group of polymethacrylates. The major product was found to be a unimer (DP = 1) RAFT agent, which is not only challenging to synthesize using conventional single-unit monomer insertion strategies, but also a highly active RAFT agent for methyl methacrylate, exhibiting faster consumption and yielding polymers with lower dispersities compared to the original, commercially available 2-cyano-2-propyl dithiobenzoate. Solvent-derived molecules were also identified predominantly at the beginning of the depolymerization, thus suggesting a significant mechanistic contribution from the solvent. Notably, the formation of both the unimer and the solvent-derived products remained consistent regardless of the RAFT agent, monomer, or solvent employed.

13.
Angew Chem Int Ed Engl ; 62(38): e202309116, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523176

RESUMO

Although controlled radical polymerization is an excellent tool to make precision polymeric materials, reversal of the process to retrieve the starting monomer is far less explored despite the significance of chemical recycling. Here, we investigate the bulk depolymerization of RAFT and ATRP-synthesized polymers under identical conditions. RAFT-synthesized polymers undergo a relatively low-temperature solvent-free depolymerization back to monomer thanks to the partial in situ transformation of the RAFT end-group to macromonomer. Instead, ATRP-synthesized polymers can only depolymerize at significantly higher temperatures (>350 °C) through random backbone scission. To aid a more complete depolymerization at even lower temperatures, we performed a facile and quantitative end-group modification strategy in which both ATRP and RAFT end-groups were successfully converted to macromonomers. The macromonomers triggered a lower temperature bulk depolymerization with an onset at 150 °C yielding up to 90 % of monomer regeneration. The versatility of the methodology was demonstrated by a scalable depolymerization (≈10 g of starting polymer) retrieving 84 % of the starting monomer intact which could be subsequently used for further polymerization. This work presents a new low-energy approach for depolymerizing controlled radical polymers and creates many future opportunities as high-yielding, solvent-free and scalable depolymerization methods are sought.

14.
J Am Chem Soc ; 145(18): 9898-9915, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37127289

RESUMO

Controlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers. This perspective focuses on the emerging field of depolymerization from polymers synthesized by controlled polymerizations including radical, ionic, and metathesis polymerizations. We provide a critical review of current literature categorized according to polymerization technique and explore numerous concepts and ideas which could be implemented to further enhance depolymerization including lower temperature systems, catalytic depolymerization, increasing polymer scope, and controlled depolymerization.

15.
Angew Chem Int Ed Engl ; 62(16): e202217683, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36802062

RESUMO

Synthetic methods to control the structure of materials at sub-micron scales are typically based on the self-assembly of structural building blocks with precise size and morphology. On the other hand, many living systems can generate structure across a broad range of length scales in one step directly from macromolecules, using phase separation. Here, we introduce and control structure at the nano- and microscales through polymerization in the solid state, which has the unusual capability of both triggering and arresting phase separation. In particular, we show that atom transfer radical polymerization (ATRP) enables control of nucleation, growth, and stabilization of phase-separated poly-methylmethacrylate (PMMA) domains in a solid polystyrene (PS) matrix. ATRP yields durable nanostructures with low size dispersity and high degrees of structural correlations. Furthermore, we demonstrate that the length scale of these materials is controlled by the synthesis parameters.

16.
Polym Chem ; 14(3): 253-258, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36760607

RESUMO

Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.

17.
J Am Chem Soc ; 145(3): 1906-1915, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626247

RESUMO

In controlled radical polymerization, oxygen is typically regarded as an undesirable component resulting in terminated polymer chains, deactivated catalysts, and subsequent cessation of the polymerization. Here, we report an unusual atom transfer radical polymerization whereby oxygen favors the polymerization by triggering the in situ transformation of CuBr/L to reactive superoxido species at room temperature. Through a superoxido ARGET-ATRP mechanism, an order of magnitude faster polymerization rate and a rapid and complete initiator consumption can be achieved as opposed to when unoxidized CuBr/L was instead employed. Very high end-group fidelity has been demonstrated by mass-spectrometry and one-pot synthesis of block and multiblock copolymers while pushing the reactions to reach near-quantitative conversions in all steps. A high molecular weight polymer could also be targeted (DPn = 6400) without compromising the control over the molar mass distributions (D < 1.20), even at an extremely low copper concentration (4.5 ppm). The versatility of the technique was demonstrated by the polymerization of various monomers in a controlled fashion. Notably, the efficiency of our methodology is unaffected by the purity of the starting CuBr, and even a brown highly-oxidized 15-year-old CuBr reagent enabled a rapid and controlled polymerization with a final dispersity of 1.07, thus not only reducing associated costs but also omitting the need for rigorous catalyst purification prior to polymerization.

18.
Biomacromolecules ; 23(10): 4241-4253, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067415

RESUMO

The synthesis of protein-polymer conjugates usually requires extensive and costly deoxygenation procedures, thus limiting their availability and potential applications. In this work, we report the ultrafast synthesis of polymer-protein bioconjugates in the absence of any external deoxygenation via an aqueous copper-mediated methodology. Within 10 min and in the absence of any external stimulus such as light (which may limit the monomer scope and/or disrupt the secondary structure of the protein), a range of hydrophobic and hydrophilic monomers could be successfully grafted from a BSA macroinitiator, yielding well-defined polymer-protein bioconjugates at quantitative yields. Our approach is compatible with a wide range of monomer classes such as (meth) acrylates, styrene, and acrylamides as well as multiple macroinitiators including BSA, BSA nanoparticles, and beta-galactosidase from Aspergillus oryzae. Notably, the synthesis of challenging protein-polymer-polymer triblock copolymers was also demonstrated, thus significantly expanding the scope of our strategy. Importantly, both lower and higher scale polymerizations (from 0.2 to 35 mL) were possible without compromising the overall efficiency and the final yields. This simple methodology paves the way for a plethora of applications in aqueous solutions without the need of external stimuli or tedious deoxygenation.


Assuntos
Cobre , Polímeros , Acrilamidas/química , Acrilatos/química , Cobre/química , Oxigênio , Polimerização , Polímeros/química , Proteínas/química , Estireno/química , Água/química , beta-Galactosidase
19.
ACS Macro Lett ; 11(10): 1212-1216, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36174124

RESUMO

Reversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate). The effect of the nature of the solvent on the depolymerization conversion was also investigated, and key solvents such as dioxane, xylene, toluene, and dimethylformamide were shown to facilitate efficient depolymerization reactions. Notably, our approach could selectively regenerate pure heat-sensitive monomers (e.g., tert-butyl methacrylate and glycidyl methacrylate) in the absence of previously reported side reactions. This work pushes the boundaries of reversing RAFT polymerization and considerably expands the chemical toolbox for recovering starting materials under relatively mild conditions.

20.
Angew Chem Int Ed Engl ; 61(40): e202206303, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36026552

RESUMO

European Research Council (ERC) Starting Grants are arguably the most competitive grants in Europe and their prestige is fully justified considering that they (i) allow focus on a high risk/high gain project through generous funding of 1.5-2 million Euros, (ii) they can enable the foundation of a new academic group and earn the submitting principal investigator a professorship, and (iii) they serve as a highly reputable award that can either facilitate tenure/promotion or assist in securing a subsequent academic position. However, the journey to getting one is far from easy. In this Viewpoint Article, I will discuss my first two unsuccessful attempts to secure an ERC Starting Grant and how the lessons learned during the process led me to ultimately secure a grant upon my third attempt.


Assuntos
Pesquisa Biomédica , Organização do Financiamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...