Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 209: 117863, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34844067

RESUMO

Hydrothermal liquefaction (HTL) is a thermochemical process for the conversion of biomass into bio-crude oil. However, treatment of post-HTL aqueous by-products is an emerging issue towards the commercialisation of HTL technology. This study investigates the use of non-catalytic wet oxidation (WO) for the reduction of organic compounds and heat production at different temperatures (200-350 °C), residence times (RT) (2-180 min) and excess oxygen. The aqueous phase from HTL of sewage sludge is investigated, and 97.6% of the chemical oxygen demand (COD) and 96.1% of the total organic carbon (TOC) were removed at the highest temperature and retention time. The minimum energy requirement achieved was 9.6 kWh/kg COD removed at 200 °C for 180 min, and the exothermic reactions of the process can generate 28.3% of the required heat. GC-FID and -MS analysis revealed that the degradation of different groups of organic compounds generates acetic acid as an intermediate by-product of WO, being further oxidised at temperatures higher than 300 °C. NH4+and NH3 are generated from the decomposition of nitrogenated organic compounds showing the highest concentration of 704.5 mg NH4+ /L at 350 °C after 180 min.

2.
Water Res ; 183: 116101, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777593

RESUMO

The beneficial use of sewage sludge for valorization of carbon and nutrients is of increasing interest while micropollutants in sludge are of concern to the environment and human health. This study investigates the hydrothermal liquefaction (HTL) of sewage sludge in a continuous flow pilot scale reactor at conditions expected to reflect future industrial installations. The processing is evaluated in terms of energy efficiency, bio-crude yields and quality. The raw sludge and post-HTL process water and solid residues were analyzed extensively for micropollutants via HPLC-MS/MS for target pharmaceuticals including antibiotics, blood pressure medicine, antidepressants, analgesics, x-ray contrast media, angiotensin II receptor blockers, immunosuppressant drugs and biocides including triazines, triazoles, carbamates, a carboxamide, an organophosphate and a cationic surfactant. The results show that a positive energy return on investment was achieved for all three HTL processing temperatures of 300, 325 and 350 °C with the most beneficial temperature identified as 325 °C. The analysis of the HTL by-products, process water and solids, indicates that HTL is indeed a suitable technology for the destruction of micropollutants. However, due to the large matrix effect of the HTL process water it can only be stated with certainty that 9 out of 30 pharmaceuticals and 5 out of 7 biocides products were destroyed successfully (over 98% removal). One compound, the antidepressant citalopram, was shown to be moderately recalcitrant at 300 °C with 87% removal and was only destroyed at temperatures ≥325 °C (>99% removal). Overall, the results suggest that HTL is a suitable technology for energy efficient and value added sewage sludge treatment enabling destruction of micropollutants.


Assuntos
Esgotos , Espectrometria de Massas em Tandem , Temperatura , Águas Residuárias , Água
3.
Sci Rep ; 6: 22159, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26922901

RESUMO

Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these 'manganese oxides' were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l'Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood's auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l'Azé I used manganese dioxide in fire-making and produced fire on demand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...