Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514216

RESUMO

Transcriptomic and gene expression analysis have greatly facilitated the identification and characterization of transcriptional regulatory factors and effectors involved in dormancy progression and other physiological processes orchestrated during bud development in peach and other temperate fruit species. Gene expression measurements are most usually based on average values from several or many individual buds. We have performed single-bud gene analysis in flower buds of peach across dormancy release using amplicons from the master regulatory DORMANCY-ASSOCIATED MADS-BOX (DAM) factors, several jasmonic acid biosynthetic genes, other genes related to flowering development, cell growth resumption, and abiotic stress tolerance. This analysis provides a close view on gene-specific, single-bud variability throughout the developmental shift from dormant to dormancy-released stages, contributing to the characterization of putative co-expression modules and other regulatory aspects in this particular tissue.

2.
PLoS One ; 10(5): e0125628, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973611

RESUMO

Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP marker set will be useful for systematic estimation of admixture structure of citrus germplasm and for diverse genetic studies.


Assuntos
Citrus/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Alelos , Mapeamento Cromossômico , Citrus/classificação , Variação Genética , Genótipo , Filogenia , Análise de Componente Principal , Análise de Sequência de DNA , Especificidade da Espécie
3.
BMC Genet ; 15: 152, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25544367

RESUMO

BACKGROUND: The most economically important Citrus species originated by natural interspecific hybridization between four ancestral taxa (Citrus reticulata, Citrus maxima, Citrus medica, and Citrus micrantha) and from limited subsequent interspecific recombination as a result of apomixis and vegetative propagation. Such reticulate evolution coupled with vegetative propagation results in mosaic genomes with large chromosome fragments from the basic taxa in frequent interspecific heterozygosity. Modern breeding of these species is hampered by their complex heterozygous genomic structures that determine species phenotype and are broken by sexual hybridisation. Nevertheless, a large amount of diversity is present in the citrus gene pool, and breeding to allow inclusion of desirable traits is of paramount importance. However, the efficient mobilization of citrus biodiversity in innovative breeding schemes requires previous understanding of Citrus origins and genomic structures. Haplotyping of multiple gene fragments along the whole genome is a powerful approach to reveal the admixture genomic structure of current species and to resolve the evolutionary history of the gene pools. In this study, the efficiency of parallel sequencing with 454 methodology to decipher the hybrid structure of modern citrus species was assessed by analysis of 16 gene fragments on chromosome 2. RESULTS: 454 amplicon libraries were established using the Fluidigm array system for 48 genotypes and 16 gene fragments from chromosome 2. Haplotypes were established from the reads of each accession and phylogenetic analyses were performed using the haplotypic data for each gene fragment. The length of 454 reads and the level of differentiation between the ancestral taxa of modern citrus allowed efficient haplotype phylogenetic assignations for 12 of the 16 gene fragments. The analysis of the mixed genomic structure of modern species and cultivars (i) revealed C. maxima introgressions in modern mandarins, (ii) was consistent with previous hypotheses regarding the origin of secondary species, and (iii) provided a new picture of the evolution of chromosome 2. CONCLUSIONS: 454 sequencing was an efficient strategy to establish haplotypes with significant phylogenetic assignations in Citrus, providing a new picture of the mixed structure on chromosome 2 in 48 citrus genotypes.


Assuntos
Cromossomos de Plantas/genética , Citrus/genética , Cruzamento , Núcleo Celular/genética , Genoma de Planta , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da Espécie
4.
Ann Bot ; 112(7): 1371-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24052558

RESUMO

BACKGROUND AND AIMS: The juvenile to adult transition (JAT) in higher plants is required for them to reach reproductive competence. However, it is a poorly understood process in woody plants, where only a few genes have been definitely identified as being involved in this transition. This work aims at increasing our understanding of the mechanisms regulating the JAT in citrus. METHODS: Juvenile and adult plants from Pineapple sweet orange (Citrus sinensis) and Rough lemon (C. jambhiri) were used to screen for differentially expressed transcription factors (TFs) using a 1·15K microarray developed on the basis of the CitrusTF database. Murcott tangor (C. reticulata × C. sinensis) and Duncan grapefruit (C. paradisi) were incorporated into the quantitative real-time reverse transcription-PCR validation in order to select those genes whose phase-specific regulation was common to the four species. KEY RESULTS: A browsable web database has been created with information about the structural and functional annotation related to 1152 unigenes of putative citrus TFs (CTFs). This database constitutes a valuable resource for research on transcriptional regulation and comparative genomics. Moreover, a microarray has been developed and used that contains these putative CTFs, in order to identify eight genes that showed differential expression in juvenile and adult meristems of four different species of citrus. Those genes have been characterized, and their expression pattern in vegetative and reproductive tissues has been analysed. Four of them are MADS-box genes, a family of TFs involved in developmental processes, whereas another one resembles MADS-box genes but lacks the MADS box itself. The other three showed high partial sequence similarity restricted to specific Arabidopsis protein domains but negligible outside those domains. CONCLUSIONS: The work presented here indicates that the JAT in citrus could be controlled by mechanisms that are in part common to those of Arabidopsis, but also somehow different, since specific factors without Arabidopsis orthologues have also been characterized. The potential involvement of the genes in the JAT is discussed.


Assuntos
Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Fatores de Transcrição/metabolismo , Citrus/genética , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Meristema/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/genética
5.
Appl Plant Sci ; 1(4)2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25202535

RESUMO

PREMISE OF THE STUDY: Single nucleotide polymorphism (SNP) markers based on Competitive Allele-Specific PCR (KASPar) were developed from sequences of three Citrus species. Their transferability was tested in 63 Citrus genotypes and 19 relative genera of the subfamily Aurantioideae to estimate the potential of SNP markers, selected from a limited intrageneric discovery panel, for ongoing broader diversity analysis at the intra- and intergeneric levels and systematic germplasm bank characterization. • METHODS AND RESULTS: Forty-two SNP markers were developed using KASPar technology. Forty-one were successfully genotyped in all of the Citrus germplasm, where intra- and interspecific polymorphisms were observed. The transferability and diversity decreased with increasing taxonomic distance. • CONCLUSIONS: SNP markers based on the KASPar method developed from sequence data of a limited intrageneric discovery panel provide a valuable molecular resource for genetic diversity analysis of germplasm within a genus and should be useful for germplasm fingerprinting at a much broader diversity level.

6.
Ann Bot ; 111(1): 1-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104641

RESUMO

BACKGROUND AND AIMS: Despite differences in morphology, the genera representing 'true citrus fruit trees' are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial 'species' of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between 'true citrus fruit trees' were clarified. METHODS: Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. KEY RESULTS: A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. CONCLUSIONS: Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis.


Assuntos
Núcleo Celular/genética , Citrus/genética , Mutação INDEL/genética , Repetições de Microssatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Árvores/genética , Agricultura , Sequência de Bases , Loci Gênicos/genética , Genoma de Planta/genética , Haplótipos/genética , Hibridização Genética , Análise de Componente Principal
7.
Mol Plant Pathol ; 13(8): 852-64, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22420919

RESUMO

Viroids are small (246-401 nucleotides), single-stranded, circular RNA molecules that infect several crop plants and can cause diseases of economic importance. Citrus are the hosts in which the largest number of viroids have been identified. Citrus exocortis viroid (CEVd), the causal agent of citrus exocortis disease, induces considerable losses in citrus crops. Changes in the gene expression profile during the early (pre-symptomatic) and late (post-symptomatic) stages of Etrog citron infected with CEVd were investigated using a citrus cDNA microarray. MaSigPro analysis was performed and, on the basis of gene expression profiles as a function of the time after infection, the differentially expressed genes were classified into five clusters. FatiScan analysis revealed significant enrichment of functional categories for each cluster, indicating that viroid infection triggers important changes in chloroplast, cell wall, peroxidase and symporter activities.


Assuntos
Parede Celular/metabolismo , Cloroplastos/metabolismo , Citrus/genética , Análise de Sequência com Séries de Oligonucleotídeos , Peroxidases/metabolismo , Simportadores/metabolismo , Sequência de Bases , Citrus/enzimologia , Citrus/metabolismo , Primers do DNA
8.
Plant Physiol Biochem ; 49(6): 636-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21459591

RESUMO

In this work, we studied the sequence of responses induced by flooding in citrus plants, with the aim of identifying the signals that lead to stomatal closure. One-year-old seedlings of Carrizo citrange, grown in sand under greenhouse conditions, were waterlogged for 35 d and compared with normally watered well-drained plants. Significant decreases in stomatal conductance and transpiration were detected between flooded and control seedlings from a week after the beginning of the experiment. However ABA concentration in leaves only started to increase after three weeks of flooding, suggesting that stomata closed in the absence of a rise in foliar ABA. Therefore, stomatal closure in waterlogged seedlings does not appear to be induced by ABA, at least during the early stages of flood-stress. The low levels of ABA detected in roots and xylem sap from flooded seedlings indicated that it is very unlikely that the ABA increase in the leaves of these plants is due to ABA translocation from roots to shoots. We propose that ABA is produced in old leaves and transported to younger leaves. Flooding had no effect on water potential or the relative water content of leaves. Soil flooding reduced root hydraulic conductance in citrus seedlings. This effect was already evident after a week of waterlogging, and at the end of the experiment, flood-stressed seedlings reached values of root hydraulic conductance below 12% of that of control plants. This reduction was related to down-regulation of the expression of PIP aquaporins. In addition, whole plant transpiration was reduced by 56% after 35 d under flooding conditions. Flood-stress also decreased the pH of sap extracted from citrus roots. Evidence is presented suggesting that acidosis induced by anoxic stress in roots causes gating of aquaporins, thereby decreasing hydraulic conductance. Additionally, stomatal closure finely balances-out low pH-mediated losses of root hydraulic conductance therefore maintaining stable leaf hydration.


Assuntos
Adaptação Fisiológica , Citrus/fisiologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Água/fisiologia , Ácido Abscísico/metabolismo , Acidose , Anaerobiose , Aquaporinas/metabolismo , Transporte Biológico , Regulação para Baixo , Inundações , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Plântula/fisiologia , Transdução de Sinais , Solo
9.
Plant Cell Rep ; 30(6): 1077-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21308470

RESUMO

The production of cybrids, combining nucleus of a species with alien cytoplasmic organelles, is a valuable method used for improvement of various crops. Several citrus cybrids have been created by somatic hybridization. These genotypes are interesting models to analyze the impact of cytoplasmic genome change on nuclear genome expression. Herein, we report genome-wide gene expression analysis in leaves of a citrus cybrid between C. reticulata cv 'Willowleaf mandarin' and C. limon cv 'Eureka lemon' compared with its lemon parent, using a Citrus 20K cDNA microarray. Molecular analysis showed that this cybrid possesses nuclear and chloroplast genomes of Eureka lemon plus mitochondria from Willowleaf mandarin and, therefore, can be considered as a lemon bearing foreign mitochondria. Mandarin mitochondria influenced the expression of a large set of lemon nuclear genes causing an over-expression of 480 of them and repression of 39 genes. Quantitative real-time RT-PCR further confirmed the credibility of microarray data. Genes over-expressed in cybrid leaves are predominantly attributed to the functional category "cellular protein metabolism" whereas in the down-regulated none functional category was enriched. Overall, mitochondria replacement affected different nuclear genes including particularly genes predicted to be involved in mitochondrial retrograde signaling. Mitochondria regulate all cell structures even chloroplast status. These results suggest that nuclear gene expression is modulated with respect to new information received from the foreign organelle, with the final objective to suit specific needs to ensure better cell physiological balance.


Assuntos
Citrus/genética , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Mitocôndrias/genética , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/genética
10.
Plant Cell Rep ; 28(11): 1689-97, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19727737

RESUMO

Allopolyploidy is known to induce novel patterns of gene expression and often gives rise to new phenotypes. Here we report on the first attempt to relate phenotypic inheritance in an allotetraploid somatic hybrid with gene expression. Carotenoid compounds in the fruit pulp of the two parental species and the hybrid were evaluated quantitatively by HPLC. Only very low levels of beta-carotene and beta-cryptoxanthin were observed in Citrus limon, while beta-cryptoxanthin was a major component of C. reticulata, which also displayed high levels of phytoene, phytofluene, beta-carotene, lutein, zeaxantin and violaxanthin. Total carotenoid content in mandarin juice sacs was 60 times greater than that in lemon. The allotetraploid hybrid produced all the same compounds as mandarin but at very low levels. Transgressive concentration of abscisic acid (ABA) was observed in the somatic hybrid. Real-time RT-PCR of total RNA from juice sacs was used to study expression of seven genes (CitDxs, CitPsy, CitPds, CitZds, CitLcy-b, CitChx-b, and CitZep) of the carotenoid biosynthetic pathway and two genes (CitNced1 and CitNced2) involved in abscisic acid synthesis from carotenoid. Gene expression was significantly higher for mandarin than lemon for seven of the nine genes analyzed. Lemon under expression was partially dominant in the somatic hybrid for three upstream steps of the biosynthetic pathway, particularly for CitDxs. Transgressive over expression was observed for the two CitNced genes. A limitation of the upstream steps of the pathway and a downstream higher consumption of carotenoids may explain the phenotype of the somatic hybrid.


Assuntos
Carotenoides/biossíntese , Citrus/genética , Proteínas de Plantas/genética , Poliploidia , Transcrição Gênica , Ácido Ascórbico/biossíntese , Quimera , Citrus/anatomia & histologia , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo
11.
Virology ; 367(2): 298-306, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17617431

RESUMO

Changes in gene expression of Mexican lime plants in response to infection with a severe (T305) or a mild (T385) isolate of Citrus tristeza virus (CTV) were analyzed using a cDNA microarray containing 12,672 probes to 6875 different citrus genes. Statistically significant (P<0.01) expression changes of 334 genes were detected in response to infection with isolate T305, whereas infection with T385 induced no significant change. Induced genes included 145 without significant similarity with known sequences and 189 that were classified in seven functional categories. Genes related with response to stress and defense were the main category and included 28% of the genes induced. Selected transcription changes detected by microarray analysis were confirmed by quantitative real-time RT-PCR. Changes detected in the transcriptome upon infecting lime with T305 may be associated either with symptom expression, with a strain-specific defense mechanism, or with a general response to stress.


Assuntos
Citrus/genética , Closterovirus/fisiologia , Transcrição Gênica , Citrus/fisiologia , Citrus/virologia , Closterovirus/genética , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
EMBO J ; 22(13): 3376-84, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12839999

RESUMO

In plants, expression of a disease-resistance character following perception of a pathogen involves massive deployment of transcription-dependent defenses. Thus, if rapid and effective defense responses have to be achieved, it is crucial that the pathogenic signal is transduced and amplified through pre-existing signaling pathways. Reversible phosphorylation of specific transcription factors, by a concerted action of protein kinases and phosphatases, may represent a mechanism for rapid and flexible regulation of selective gene expression by environmental stimuli. Here we identified a novel DNA-binding protein from tobacco plants, designated DBP1, with protein phosphatase activity, which binds in a sequence-specific manner to a cis- acting element of a defense-related gene and participates in its transcriptional regulation. This finding helps delineate a terminal event in a signaling pathway for the selective activation of early transcription-dependent defense responses in plants, and suggests that stimulus-dependent reversible phosphorylation of regulatory proteins may occur directly in a transcription protein-DNA complex.


Assuntos
Nicotiana/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Núcleo Celular/metabolismo , Primers do DNA , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
14.
Planta ; 217(4): 566-76, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12733075

RESUMO

Chitinases are ubiquitous proteins that occur in all plants in multiple isoforms. We have isolated the ChtC2 gene encoding an unusual, basic (class I) chitinase from potato ( Solanum tuberosum L.). In contrast to other chitinase genes, ChtC2 is not activated by infection, but rather constitutively expressed in leaves and stems where it is restricted to epidermal cells. Sequence analysis revealed a number of potential regulatory elements in the promoter, but most striking was the presence of a 319-bp direct repeat located between -333 and -968 upstream of the transcription start site. For a functional analysis, a 1,322-bp promoter fragment and two 5' deletions of 782 bp and 162 bp in length were translationally fused to the beta-glucuronidase (GUS) reporter gene and used for transient expression studies by particle bombardment. All promoter constructs conferred expression of GUS activity in different epidermal cell types of potato leaves. Expression in parenchyma cells of the leaf mesophyll was not detectable with any of the ChtC2 gene promoter constructs, in contrast to the pattern observed with the 35S promoter from cauliflower mosaic virus. The epidermis-specific expression of the reporter gene was confirmed using transgenic potato plants containing the fusion of the entire ChtC2 promoter with the GUS reporter. Histochemical analysis indicated that the promoter was only active in epidermal cells of leaves.


Assuntos
Quitinases/genética , Epiderme Vegetal/genética , Regiões Promotoras Genéticas/genética , Solanum tuberosum/genética , Sequência de Aminoácidos , Sequência de Bases , Quitinases/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Histocitoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência do Ácido Nucleico , Solanum tuberosum/citologia , Solanum tuberosum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...