Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587397

RESUMO

High-speed atomic force microscopy (HS-AFM) is a popular molecular imaging technique for visualizing single-molecule biological processes in real-time due to its ability to image under physiological conditions in liquid environments. The photothermal off-resonance tapping (PORT) mode uses a drive laser to oscillate the cantilever in a controlled manner. This direct cantilever actuation is effective in the MHz range. Combined with operating the feedback loop on the time domain force curve rather than the resonant amplitude, PORT enables high-speed imaging at up to ten frames per second with direct control over tip-sample forces. PORT has been shown to enable imaging of delicate assembly dynamics and precise monitoring of patterns formed by biomolecules. Thus far, the technique has been used for a variety of dynamic in vitro studies, including the DNA 3-point-star motif assembly patterns shown in this work. Through a series of experiments, this protocol systematically identifies the optimal imaging parameter settings and ultimate limits of the HS-PORT AFM imaging system and how they affect biomolecular assembly processes. Additionally, it investigates potential undesired thermal effects induced by the drive laser on the sample and surrounding liquid, particularly when the scanning is limited to small areas. These findings provide valuable insights that will drive the advancement of PORT mode's application in studying complex biological systems.


Assuntos
Fenômenos Mecânicos , Nanotecnologia , Microscopia de Força Atômica/métodos , Imagem Molecular , DNA
2.
Beilstein J Nanotechnol ; 15: 134-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317825

RESUMO

Dynamic atomic force microscopy (AFM) modes that operate at frequencies far away from the resonance frequency of the cantilever (off-resonance tapping (ORT) modes) can provide high-resolution imaging of a wide range of sample types, including biological samples, soft polymers, and hard materials. These modes offer precise and stable control of vertical force, as well as reduced lateral force. Simultaneously, they enable mechanical property mapping of the sample. However, ORT modes have an intrinsic drawback: a low scan speed due to the limited ORT rate, generally in the low-kilohertz range. Here, we analyze how the conventional ORT control method limits the topography tracking quality and hence the imaging speed. The closed-loop controller in conventional ORT restricts the sampling rate to the ORT rate and introduces a large closed-loop delay. We present an alternative ORT control method in which the closed-loop controller samples and tracks the vertical force changes during a defined time window of the tip-sample interaction. Through this, we use multiple samples in the proximity of the maximum force for the feedback loop, rather than only one sample at the maximum force instant. This method leads to improved topography tracking at a given ORT rate and therefore enables higher scan rates while refining the mechanical property mapping.

3.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695116

RESUMO

High-speed atomic force microscopy (HS-AFM) is a technique capable of revealing the dynamics of biomolecules and living organisms at the nanoscale with a remarkable temporal resolution. The phase delay in the feedback loop dictates the achievable speed of HS-AFM instruments that rely on fast nanopositioners operated predominantly in conjunction with piezoelectric actuators (PEAs). The high capacitance and high operating voltage of PEAs make them difficult to drive. The limited bandwidth of associated high-voltage piezo-amplifiers is one of the bottlenecks to higher scan speeds. In this study, we report a high-voltage, wideband voltage amplifier comprised of a separate amplification and novel voltage-follower power stage, requiring no global feedback. The reported amplifier can deliver a current over ±2 amps, offers a small-signal bandwidth of 1 MHz, and exhibits an exceptionally low phase lag, making it particularly well suited for the needs of next-generation HS-AFMs. We demonstrate its capabilities by reporting its achievable bandwidth under various PEA loads and showcasing its merit for HS-AFM by imaging tubulin protofilament dynamics at sub-second frame rates.

4.
Nat Commun ; 12(1): 6180, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702818

RESUMO

Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly.


Assuntos
Proteínas de Ciclo Celular/química , Centríolos/química , Chlamydomonas reinhardtii/química , Cinética , Microscopia de Força Atômica , Modelos Químicos , Simulação de Dinâmica Molecular , Biogênese de Organelas , Conformação Proteica , Multimerização Proteica
5.
Nat Commun ; 12(1): 3805, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155202

RESUMO

Centrioles are evolutionarily conserved multi-protein organelles essential for forming cilia and centrosomes. Centriole biogenesis begins with self-assembly of SAS-6 proteins into 9-fold symmetrical ring polymers, which then stack into a cartwheel that scaffolds organelle formation. The importance of this architecture has been difficult to decipher notably because of the lack of precise tools to modulate the underlying assembly reaction. Here, we developed monobodies against Chlamydomonas reinhardtii SAS-6, characterizing three in detail with X-ray crystallography, atomic force microscopy and cryo-electron microscopy. This revealed distinct monobody-target interaction modes, as well as specific consequences on ring assembly and stacking. Of particular interest, monobody MBCRS6-15 induces a conformational change in CrSAS-6, resulting in the formation of a helix instead of a ring. Furthermore, we show that this alteration impairs centriole biogenesis in human cells. Overall, our findings identify monobodies as powerful molecular levers to alter the architecture of multi-protein complexes and tune centriole assembly.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
6.
Beilstein J Nanotechnol ; 11: 1272-1279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953371

RESUMO

In this work, we report on the integration of an atomic force microscope (AFM) into a helium ion microscope (HIM). The HIM is a powerful instrument, capable of imaging and machining of nanoscale structures with sub-nanometer resolution, while the AFM is a well-established versatile tool for multiparametric nanoscale characterization. Combining the two techniques opens the way for unprecedented in situ correlative analysis at the nanoscale. Nanomachining and analysis can be performed without contamination of the sample and environmental changes between processing steps. The practicality of the resulting tool lies in the complementarity of the two techniques. The AFM offers not only true 3D topography maps, something the HIM can only provide in an indirect way, but also allows for nanomechanical property mapping, as well as for electrical and magnetic characterization of the sample after focused ion beam materials modification with the HIM. The experimental setup is described and evaluated through a series of correlative experiments, demonstrating the feasibility of the integration.

7.
Beilstein J Nanotechnol ; 10: 2357-2363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886112

RESUMO

Employing polymer cantilevers has shown to outperform using their silicon or silicon nitride analogues concerning the imaging speed of atomic force microscopy (AFM) in tapping mode (intermittent contact mode with amplitude modulation) by up to one order of magnitude. However, tips of the cantilever made out of a polymer material do not meet the requirements for tip sharpness and durability. Combining the high imaging bandwidth of polymer cantilevers with making sharp and wear-resistant tips is essential for a future adoption of polymer cantilevers in routine AFM use. In this work, we have developed a batch fabrication process to integrate silicon nitride tips with an average tip radius of 9 ± 2 nm into high-speed SU8 cantilevers. Key aspects of the process are the mechanical anchoring of a moulded silicon nitride tip and a two-step release process. The fabrication recipe can be adjusted to any photo-processable polymer cantilever.

8.
Nat Nanotechnol ; 13(8): 696-701, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784964

RESUMO

The self-assembly of protein complexes is at the core of many fundamental biological processes1, ranging from the polymerization of cytoskeletal elements, such as microtubules2, to viral capsid formation and organelle assembly3. To reach a comprehensive understanding of the underlying mechanisms of self-assembly, high spatial and temporal resolutions must be attained. This is complicated by the need to not interfere with the reaction during the measurement. As self-assemblies are often governed by weak interactions, they are especially difficult to monitor with high-speed atomic force microscopy (HS-AFM) due to the non-negligible tip-sample interaction forces involved in current methods. We have developed a HS-AFM technique, photothermal off-resonance tapping (PORT), which is gentle enough to monitor self-assembly reactions driven by weak interactions. We apply PORT to dissect the self-assembly reaction of SAS-6 proteins, which form a nine-fold radially symmetric ring-containing structure that seeds the formation of the centriole organelle. Our analysis reveals the kinetics of SAS-6 ring formation and demonstrates that distinct biogenesis routes can be followed to assemble a nine-fold symmetrical structure.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/citologia , Microscopia de Força Atômica/métodos , Proteínas de Plantas/ultraestrutura , Proteínas de Ciclo Celular/análise , Centríolos/química , Chlamydomonas reinhardtii/ultraestrutura , Cinética , Microscopia de Força Atômica/instrumentação , Modelos Moleculares , Proteínas de Plantas/análise , Multimerização Proteica
9.
Rev Sci Instrum ; 88(12): 123712, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289234

RESUMO

Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...