Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5629, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163439

RESUMO

The control of organ size mainly relies on precise autonomous growth programs. However, organ development is subject to random variations, called developmental noise, best revealed by the fluctuating asymmetry observed between bilateral organs. The developmental mechanisms ensuring bilateral symmetry in organ size are mostly unknown. In Drosophila, null mutations for the relaxin-like hormone Dilp8 increase wing fluctuating asymmetry, suggesting that Dilp8 plays a role in buffering developmental noise. Here we show that size adjustment of the wing primordia involves a peak of dilp8 expression that takes place sharply at the end of juvenile growth. Wing size adjustment relies on a cross-organ communication involving the epidermis as the source of Dilp8. We identify ecdysone signaling as both the trigger for epidermal dilp8 expression and its downstream target in the wing primordia, thereby establishing reciprocal hormonal feedback as a systemic mechanism, which controls organ size and bilateral symmetry in a narrow developmental time window.


Assuntos
Proteínas de Drosophila , Relaxina , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Relaxina/metabolismo , Asas de Animais/metabolismo
2.
Sci Total Environ ; 825: 153911, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189227

RESUMO

Swine growers seeking to lower costs and environmental impact have turned to alternative carbohydrate feed sources. A feeding trial was conducted to determine the effect carbohydrate sources have on manure composition and gas emissions. A total of 48 gilts averaging 138 kg BW were fed diets consisting of (a) low fiber (LF) grain, or (b) high fiber (HF) aro-industrial co-product (AICP). The LF diets included corn and soybean meal (CSBM) and barley soybean meal (BSBM). The HF AICP diets were CSBM based and supplemented with one of the following materials: beet pulp; corn distillers dried grains with solubles; soybean hulls; or wheat bran. Diets were fed for 42 d with an average daily feed intake of 2.71 kg d-1. Feces and urine were collected twice daily and added to manure storage containers in which manure slurries were monitored for gas emissions and chemical properties. Manures of animals fed HF diets had significantly (P < 0.05) more excretion of solids, C, N, and organic N, but less total S compared to pigs fed the LF diets. Animals feed HF diets had significantly (P < 0.05) higher levels of ammonia, sulfide, volatile fatty acids, and phenols in manure compared to pigs fed the LF diets. Manure of animals fed HF diets had 30% (P < 0.05) lower NH3 and 17% lower hydrogen sulfide emissions; however, fiber had no impact on odor emissions. Based on the partitioning of nutrients, animals fed HF fiber diets had increased manure retention for C and N but decreased levels of N gas emissions and manure S. There were little differences in manure and gas emissions for animals fed LF diets, but the source of HF AICP diets had a significant impact on manure composition and gas emissions.


Assuntos
Ração Animal , Esterco , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Fibras na Dieta , Feminino , Glycine max , Sus scrofa , Suínos , Zea mays
3.
J Anim Sci ; 95(9): 4030-4036, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28991990

RESUMO

Three experiments were conducted to determine the effect of narasin on growth performance and on GE and nutrient digestibility in nursery, grower, and finishing pigs fed either a corn-soybean meal (CSBM) diet or a CSBM diet supplemented with distillers dried grains with solubles (DDGS), in combination with either 0 or 30 mg narasin/kg of diet. In Exp. 1 (64 gilts, initial BW = 9.0 kg, SD = 1.0 kg) and Exp. 2 (60 gilts. initial BW = 81.1 kg, SD = 6.1 kg), gilts were allotted into individual pens and fed their experimental diets for 24 and 21 d, respectively. On the last 2 d of each experiment, fecal samples were collected to assess apparent total tract digestibility (ATTD) of GE and various nutrients. In Exp. 3, 2 separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates and fed their experimental diets for 30 d prior to a time-based 6-d total fecal collection period to assess GE and nutrient digestibility. In Exp. 1, there was an interaction between diet type and narasin addition for G:F and for many of the ATTD coefficients measured. When narasin was supplemented to the CSBM diet, ATTD of GE, DM, C, S, phosphorus, NDF, and ADF was either not changed or reduced, while when narasin was supplemented to DDGS diets, these same ATTD parameters were increased (interaction, ≤ 0.05). Even though ADG and ADFI were not affected, G:F was improved in pigs fed the CSBM diet with supplemental narasin, but was reduced in pigs fed the DDGS diet with supplemental narasin (interaction, < 0.05). In Exp. 2, there was an interaction between diet type and narasin supplementation only for ATTD of Ca (interaction, < 0.01), in that narasin supplementation did not change the ATTD of Ca in pigs fed the CSBM diet, while narasin supplementation reduced the ATTD of Ca in pigs fed the DDGS containing diet. In Exp. 3, there was an interaction between diet and narasin only for ATTD of C (interaction, < 0.01) in that narasin supplementation resulted in an increased ATTD of C in pigs fed the CSBM diet, while narasin supplementation to the DDGS containing diet resulted in a reduced ATTD of Ca. In general, the data indicate that narasin interacted with and had its largest effect on pig performance and GE or nutrient digestibility in 9 to 23 kg pigs compared to pigs weighing greater than 80 kg. The data also indicate that the addition of DDGS reduced GE, DM, Ca, and N digestibility, regardless of BW.


Assuntos
Fibras na Dieta/metabolismo , Suplementos Nutricionais , Fósforo na Dieta/metabolismo , Piranos/farmacologia , Suínos/fisiologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão/efeitos dos fármacos , Fezes/química , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Piranos/administração & dosagem , Distribuição Aleatória , Glycine max , Suínos/crescimento & desenvolvimento , Zea mays
4.
Bioresour Technol ; 202: 84-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26702515

RESUMO

Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 µm) or coarse (631 µm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 µm), and a greater biological activity/potential.


Assuntos
Ração Animal/análise , Fibras na Dieta/análise , Esterco/análise , Tamanho da Partícula , Resíduos/análise , Anaerobiose , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/metabolismo , Dieta , Metano/análise , Glycine max/química , Tensão Superficial , Suínos , Volatilização
5.
J Environ Manage ; 159: 18-26, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25996623

RESUMO

Methane emission is an important tool in the evaluation of manure management systems due to the potential impact it has on global climate change. Field procedures used for estimating methane emission rates require expensive equipment, are time consuming, and highly variable between farms. The purpose of this paper is to report a simple laboratory procedure for estimating methane emission from stored manure. The test developed was termed a methane production rate (MPR) assay as it provides a short-term biogas production measurement. The MPR assay incubation time is short (3d), requires no sample preparation in terms of inoculation or dilution of manure, is incubated at room temperature, and the manure is kept stationary. These conditions allow for high throughput of samples and were chosen to replicate the conditions within deep-pit manure storages. In brief, an unaltered aliquot of manure was incubated at room temperature for a three-days to assay the current rate of methane being generated by the manure. The results from this assay predict an average methane emission factor of 12.2 ± 8.1 kg CH4 head(-1) yr(-1) per year, or about 5.5 ± 3.7 kg CH4 per finished animal, both of which compare well to literature values of 5.5 ± 1.1 kg CH4 per finished pig for deep-pit systems (Liu et al., 2013). The average methane flux across all sites and months was estimated to be 22 ± 17 mg CH4 m(-2)-min(-1), which is within literature values for deep-pit systems ranging from 0.24 to 63 mg CH4 m(-2)-min(-1) (Park et al., 2006) and similar to the 15 mg CH4 m(-2)-min(-1) estimated by (Zahn et al., 2001).


Assuntos
Biocombustíveis/análise , Ensaios de Triagem em Larga Escala/métodos , Esterco , Metano/análise , Eliminação de Resíduos Líquidos/métodos , Animais , Esterco/análise , Suínos , Temperatura
6.
Trends Cell Biol ; 23(7): 336-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23587490

RESUMO

In animal species undergoing determinate growth, the making of a full-size adult body requires a series of coordinated growth events culminating in the cessation of growth that precedes sexual maturation. The merger between physiology and genetics now coming to pass in the Drosophila model allows us to decipher these growth events with an unsurpassed level of sophistication. Here, we review several coordination mechanisms that represent fundamental aspects of growth control: adaptation of growth to environmental cues, interorgan coordination, and the coordination of growth with developmental transitions. The view is emerging of an integrated process where organ-autonomous growth is coordinated with both developmental and environmental cues to define final body size.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Ecdisona/fisiologia , Transdução de Sinais/fisiologia , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Corpo Adiposo/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...