Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121391, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38905793

RESUMO

In many industrial processes a large amount of water with high salinity is co-produced whose treatment poses considerable challenges to the available technologies. The produced water (PW) from offshore operations is currently being discharged to sea without treatment for dissolved pollutants due to space limitations. A biofilter on the seabed adjacent to a production platform would negate all size restrictions, thus reducing the environmental impact of oil and gas production offshore. The moving bed biofilm reactor (MBBR) was investigated for PW treatment from different oilfields in the North Sea at 10 °C and 40 °C, corresponding to the sea and PW temperature, respectively. The six PW samples in study were characterized by high salinity and chemical oxygen demand with ecotoxic effects on marine algae S. pseudocostatum (0.4%

2.
Water Res ; 242: 120104, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348423

RESUMO

Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH4 loading rates. Biomass productivity and CH4 loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L-1·d-1, with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L-1. Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH4 oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g-1·d-1 and 5.42 L·g-1·d-1, respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH4 and nutrients.


Assuntos
Metano , Nitrogênio , Humanos , Metano/metabolismo , Águas Residuárias , Oxirredução , Reatores Biológicos/microbiologia , Biofilmes
3.
J Hazard Mater ; 427: 127889, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863559

RESUMO

Conventional wastewater treatment plants (WWTPs) cannot remove organic micropollutants efficiently, and thus various polishing processes are increasingly being studied. One such potential process is utilising biogenic manganese oxides (BioMnOx). The present study operated two moving bed biofilm reactors (MBBRs) with synthetic sewage as feed, one reactor feed was spiked with Mn(II) which allowed the continuous formation of BioMnOx by Mn-oxidising bacteria in the suspended biofilms (i.e. BioMn-MBBR). Spiking experiments with 14 micropollutants were conducted to investigate if BioMnOx combined with MBBR could be utilised to polish micropollutants in wastewater treatment. Results show enhanced removal by BioMn-MBBR over control MBBR (without BioMnOx) for specific micropollutants, such as diclofenac (36% vs. 5%) and sulfamethoxazole (80% vs. 24%). However, diclofenac removal was significantly inhibited when municipal wastewater was fed, and a further batch experiment demonstrates the reduced removal of diclofenac could be due to (unusual) higher pH in municipal wastewater compared to synthetic sewage. A shift in bacterial community was also observe in BioMn-MBBR over long-term operation. Overall, BioMn-MBBR in this study shows great potential for practical application in removing a larger range of micropollutants, which could be applied as an efficient polishing step for typical municipal wastewater.


Assuntos
Biofilmes , Águas Residuárias , Reatores Biológicos , Manganês , Óxidos , Polônia , Eliminação de Resíduos Líquidos
4.
Environ Technol ; 42(4): 584-596, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31345121

RESUMO

This study investigated the feasibility of UV-absorbance and fluorescence as monitoring tools for ozone dosages applied to effluents from wastewater treatment plans (WWTPs). Secondary treated effluents from five Swedish WWTPs underwent ozonation (at dosages ranging 0.5-12.0 mg O3/L) in bench-scale experiments. Correlations between ozone dosages and UV-absorbance at 254 and 272 nm were extrapolated with the first one being preferential for the wastewaters used because of its higher signal. UV-absorbance could detect differences in the applied ozone dosage as low as 1 mg/L, making it suitable to monitor effluent ozone treatment processes. Next, fluorescence was investigated at wavelength transitions that have being associated with humic-like fluorescents (Ex249Em450 and Ex335Em450) and protein-like fluorescents (Ex275Em340 and Ex231Em360 and Ex231Em315 and Ex275Em310). The Ex249Em450 transition was found to have the highest signal in all effluents and the best linear regression fitting with the ozone dosages over a wide range. However, low ozone dosages (0.5-3.0 mg O3/L), Ex335Em450 wavelength transition showed a more constant slope among the different domestic wastewater samples with slightly better R 2 values than the Ex249Em450 transition. Fluorescence removal via ozonation correlated with the pharmaceutical removal; however, the wellness of fitting was directly dependent on the pharmaceuticals' reactivity with ozone. Pharmaceuticals with moderate reactivity towards ozone appeared to be linearly correlated with the Ex249Em450 transition, while very reactive or recalcitrant pharmaceuticals had an exponential or a parabolic dependency. This means that fluorescence can potentially be used as a qualitative tool for pharmaceutical removal. Abbreviations: APIs, Active Pharmaceutical Ingredients; DOM, Dissolved organic matter; WWTPs, wastewater treatment plans; NOM, Natural organic matter; UV, Ultra-Violet light; DOC, Dissolved organic carbon.


Assuntos
Ozônio , Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Fluorescência , Águas Residuárias/análise , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 403: 123536, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32823027

RESUMO

Moving bed biofilm reactors (MBBRs) were placed at two wastewater treatment plants, where they were constantly fed with effluent and intermittently fed with primary wastewater. Each reactor was subjected to different feast/famine periods and flow rates of primary wastewater, thus the different organic and nutrient loads (chemical oxygen demand(COD), ammonium(NH4-N)) resulted in different feast-famine conditions applied to the biomass. In batch experiments, this study investigated the effects of various feast-famine conditions on the biodegradation of micropollutants by MBBRs applied as an effluent polishing step. Rate constants of micropollutant removals were found to be positively correlated to the load of the total COD and NH4-N, indicating that higher organic loads were favourable for the growth of micropollutant degraders in these MBBRs. Rate constant of atenolol was five times higher when the biomass was fed with the highest COD and NH4-N load than it was fed with the lowest COD and NH4-N load. For diclofenac, mycophenolic acid and iohexol, their maximum rate constants were obtained with feeding of COD and NH4-N of approximately 570 mgCOD/d and 40∼60 mgNH4-N/d respectively. This also supports the concept that co-metabolism (rather competition inhibition or catabolic repression) plays an important role in micropollutants biodegradation in wastewater.


Assuntos
Biofilmes , Eliminação de Resíduos Líquidos , Biodegradação Ambiental , Reatores Biológicos , Águas Residuárias
6.
Chemosphere ; 259: 127397, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32599380

RESUMO

A hybrid wastewater treatment process with combined attached biofilm (moving bed biofilm reactor) and activated sludge, named as Hybas™, was implemented for the treatment of municipal wastewater. The system consisted of six staged reactors in series including pre-denitrification and nitrification in the Hybas™ line and post-denitrification in a pure MBBR. In addition to the significant removal of nutrients and organic matter from municipal wastewater, Hybas™ also showed removal capacity for pharmaceuticals. Of particular interest was the enhanced removal for pharmaceuticals (i.e. X-ray contrast media) compared to other biological systems. Spiking experiments showed that the maximum removal rate constants (k, h-1) for 10 out of the 21 investigated pharmaceuticals (including diclofenac) were observed to occur within the two aerobic Hybas ™ reactors, operated in a flow-shifting mode that allows even biofilm growth of nitrifying bacteria. In total, 14 out of the 21 pharmaceuticals were removed by more than 50% during continuous flow operation in the all Hybas™ line and post-denitrification MBBR. The calculated and estimated removal contributions of pharmaceuticals by each individual reactor were also assessed.


Assuntos
Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Nitrificação , Esgotos/microbiologia , Águas Residuárias
7.
Sci Total Environ ; 663: 496-506, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30716641

RESUMO

Further biological polishing of micropollutants in WWTP effluents is limited by the lack of available carbon for cometabolic degradation. Metabolism of polyhydroxyalkanoates (PHAs) stored intracellularly during enhanced biological phosphorus removal (EBPR) could serve as carbon source for post-denitrification and micropollutant cometabolism. The removal of nine micropollutants (i.e., pharmaceuticals and corrosion inhibitors) was investigated by using Moving Bed Biofilm Reactors (MBBRs), selecting phosphorus (PAO) or glycogen (GAO) accumulating organisms under different redox conditions. Three laboratory-scale MBBRs were operated in sequencing-batch mode under cyclical anaerobic and aerobic/anoxic conditions for phosphorus removal. Batch experiments were performed to evaluate the biodegradation potential of micropollutants along with the utilization of internally stored PHA. Experiments showed that aerobic PAO were able to efficiently remove most of the targeted micropollutants. The removal of benzotriazole, 5­methyl­1H­benzotriazole, carbamazepine, ketoprofen and diclofenac occurred simultaneously to phosphorus uptake and terminated when phosphorus was no longer available. Denitrifying PAO and aerobic GAO exhibited lower removal of micropollutants than aerobic PAO. Degradation profiles of stored PHA suggested a diverse utilization of the different fractions of PHA for phosphorus and micropollutant removal, with PHV (poly 3­hydroxyvalerate) most likely used for the cometabolism of targeted micropollutants.


Assuntos
Reatores Biológicos , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Biofilmes , Reatores Biológicos/microbiologia , Oxirredução
8.
Water Res ; 147: 214-222, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30312794

RESUMO

Chlorine is the most frequently used disinfectant and oxidant for maintaining swimming pool water quality; however, it reacts continuously with dissolved organic matter to produce disinfection by-products (DBPs), which are a health risk for pool users. UV treatment is used widely to remove chloramines, which are the most prevalent group of DBPs, albeit chloro-organic DBP concentrations often increase during post-UV chlorination. In this work, UV and ozone treatments were investigated as additional technologies to eliminate DBP formation and their precursors. Batch experiments were conducted under controlled conditions, using realistic UV and ozone dosages and real pool water samples collected from a public swimming pool. A gradual increase in all investigated DBP concentrations and predicted toxicity was observed during chlorination after repeated UV treatments, and concentrations of certain DBPs also increased during post-ozone chlorination. Based on ozone and chlorine's similar reactivity, ozone was used directly after UV treatment to decrease the induction of DBP formation. Most DBP concentrations decreased during repeated combined treatments. It was also observed that DBP formed by post-ozone chlorination was removed by photolysis, thereby indicating synergy between the treatments. Repeated treatments using realistic UV and ozone dosages predicted that water quality will improve as a result of continuous combined UV and ozone treatments.


Assuntos
Desinfetantes , Ozônio , Piscinas , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Cloro , Desinfecção
9.
Bioresour Technol ; 267: 677-687, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071459

RESUMO

Hospital wastewater contains high concentrations of pharmaceuticals, which pose risks to receiving waters. In this study, a pilot plant consisting of six moving bed biofilm reactors (MBBRs) in series (with the intention to integrate Biological Oxygen Demand (BOD) removal, nitrification and denitrification as well as prepolishing Chemical Oxygen Demand (COD) for ozonation) was built to integrate pharmaceutical removal and intermittent feeding of the latter reactors aimed for micropollutant removal. Based on the experimental resultss, nitrifying MBBRs achieved higher removal as compared to denitrifying MBBRs except for azithromycin, clarithromycin, diatrizoic acid, propranolol and trimethoprim. In the batch experiments, nitrifying MBBRs showed the ability to remove most of the analysed pharmaceuticals, with degradation rate constants ranging from 5.0 × 10-3 h-1 to 2.6 h-1. In general, the highest degradation rate constants were observed in the nitrifying MBBRs while the latter MBBRs showed lower degradation rate constant. However, when the degradation rate constants were normalised to the respective biomass, the intermittently fed reactors presented the highest specific activity. Out of the 22 compounds studied, 17 compounds were removed with more than 20%.


Assuntos
Hospitais , Preparações Farmacêuticas/isolamento & purificação , Águas Residuárias , Biofilmes , Reatores Biológicos , Desnitrificação , Nitrificação , Eliminação de Resíduos Líquidos
10.
Water Res ; 133: 289-298, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407710

RESUMO

To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic compound concentration changes during ozonation. Ozone reactions were described by first order kinetics. Organic matter, assessed as chemical oxygen demand and fluorescence, decreased by 25% (low O3), 30% (middle O3) and 53% (high O3), while water transmittance improved by 15% over an 8-day period. No fish mortality was observed. Overall, this study confirms that ozone can improve RAS water quality, provides a better understanding of the ozone decay mechanisms that can be used to define further safe ozone treatment margins, and that fluorescence could be used as a monitoring tool to control ozone. This study might be used as a tool to design ozone systems for full-scale RAS by analysing water sample from the specific RAS in the laboratory.


Assuntos
Aquicultura , Oxidantes/química , Ozônio/química , Purificação da Água/métodos , Água Doce , Cinética , Poluentes da Água/química , Qualidade da Água
11.
Water Res ; 123: 388-400, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28686941

RESUMO

Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 µm) using targeted batch experiments (initial concentration = 1 µg L-1, for X-ray contrast media 15 µg L-1) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient Kd,eq (L g-1). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient Kd,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). Kd,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between Kd,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that diffusion in thin biofilms may be strongly limited (f â‰ª 0.1) by the high biomass density (reduced porosity).


Assuntos
Biofilmes , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Reatores Biológicos , Cinética , Águas Residuárias
12.
Sci Total Environ ; 599-600: 910-917, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501015

RESUMO

Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment.

13.
Bioresour Technol ; 236: 77-86, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28390280

RESUMO

Previous studies have demonstrated that aerobic moving bed biofilm reactors (MBBRs) remove pharmaceuticals better than activated sludge. Thus we used a MBBR system to polish the effluent of an activated sludge wastewater treatment plant. To overcome that effluent contains insufficient organic matter to sustain enough biomass, the biofilm was intermittently fed with raw wastewater. The capacity of pharmaceutical degradation was investigated by spiking pharmaceuticals. Actual removal during treatment was assessed by sampling the inlets and outlets of reactors. The removal of the majority of pharmaceuticals was enhanced through the intermittent feeding of the MBBR. First-order rate constants for pharmaceutical removal, normalised to biomass, were significantly higher compared to other studies on activated sludge and suspended biofilms, especially for diclofenac, metoprolol and atenolol. Due to the intermittently feeding, degradation of diclofenac occurred with a half-life of only 2.1h and was thus much faster than any hitherto described wastewater bioreactor treatment.


Assuntos
Biofilmes , Águas Residuárias , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
14.
J Hazard Mater ; 332: 140-148, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28285107

RESUMO

Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

15.
Chemosphere ; 174: 716-721, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28208083

RESUMO

During simulation-type biodegradation tests, volatile chemicals will continuously partition between water phase and headspace. This study addressed how (1) this partitioning affects test results and (2) can be accounted for by combining equilibrium partition and dynamic biodegradation models. An aqueous mixture of 9 (semi)volatile chemicals was first generated using passive dosing and then diluted with environmental surface water producing concentrations in the ng/L to µg/L range. After incubation for 2 h to 4 weeks, automated Headspace Solid Phase Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relatively to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Biodegradation rate constants relating to the chemical in the water phase, kwater, were generally a factor 1 to 11 times higher than biodegradation rate constants relating to the total mass of chemical in the test system, ksystem, with one exceptional factor of 72 times for a long chain alkane. True water phase degradation rate constants were found (i) more appropriate for risk assessment than test system rate constants, (ii) to facilitate extrapolation to other air-water systems and (iii) to be better defined input parameters for aquatic exposure and fate models.


Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo , Biodegradação Ambiental , Cinética , Peso Molecular , Compostos Orgânicos Voláteis/química , Água/química
16.
Water Res ; 113: 139-148, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28213335

RESUMO

Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs applied in the effluent of conventional wastewater treatment plants to remove clindamycin. First, a batch experiment was executed with a high initial concentration of clindamycin to identify the transformation products. It was shown that clindamycin can be removed from wastewater by MBBR and the treatment process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments using MBBR carriers from polishing and nitrifying reactors. Additionally, the presence of these two metabolites in biofilm-free wastewater effluent was studied. The nitrifying biofilm reactor had a higher biological activity with k-value of 0.1813 h-1 than the reactor with polishing biofilm (k = 0.0161 h-1) which again has a much higher biological activity for removal of clindamycin than of the suspended bacteria (biofilm-free control). Clindamycin sulfoxide was the main transformation product which was found in concentrations exceeding 10% of the initial clindamycin concentration after 1 day of MBBR treatment. Thus, MBBRs should not necessarily be considered as reactors mineralizing clindamycin as they perform transformation reactions at least to some extent.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Clindamicina , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias
17.
Int J Hyg Environ Health ; 220(3): 604-610, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122693

RESUMO

The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were increasing with increased humic acid concentrations. At the highest humic acid concentration (30mgC/L), the biodegradation rate constants were four times higher than the biodegradation rate constants without added humic acid. This shows that the presence of complex substrate stimulates degradation via a co-metabolism-like mechanism and competitive inhibition does not occur. Increases of rate constant per mgC/L are tentatively calculated.


Assuntos
Biofilmes , Substâncias Húmicas , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
18.
Water Res ; 111: 357-365, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28107749

RESUMO

The aim of this study was to investigate the potential of fluorescence spectroscopy to be used as an ozone dosage determination tool in recirculating aquaculture systems (RASs), by studying the relationship between fluorescence intensities and dissolved organic matter (DOM) degradation by ozone, in order to optimise ozonation treatment. Water samples from six different Danish facilities (two rearing units from a commercial trout RAS, a commercial eel RAS, a pilot RAS and two marine water aquariums) were treated with different O3 dosages (1.0-20.0 mg/L ozone) in bench-scale experiments, following which fluorescence intensity degradation was eventually determined. Ozonation kinetic experiments showed that RAS water contains fluorescent organic matter, which is easily oxidised upon ozonation in relatively low concentrations (0-5 mg O3/L). Fluorescence spectroscopy has a high level of sensitivity and selectivity in relation to associated fluorophores, and it is able to determine accurately the ozone demand of each system. The findings can potentially be used to design offline or online sensors based on the reduction by ozone of natural fluorescent-dissolved organic matter in RAS. The suggested indirect determination of ozone delivered into water can potentially contribute to a safer and more adequate ozone-based treatment to improve water quality.


Assuntos
Ozônio/química , Espectrometria de Fluorescência , Aquicultura , Poluentes Químicos da Água/química , Purificação da Água
19.
Water Res ; 110: 141-149, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28006704

RESUMO

Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity and the formation of chloro-organic DBPs such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine, we hypothesised that the created reactivity to chlorine, as a result of the UV treatment of dissolved organic matter in swimming pool water, might also be expressed as increased reactivity to ozone. Moreover, ozonation might saturate the chlorine reactivity created by UV treatment and mitigate increased formation of a range of volatile DBPs. We found that UV treatment makes pool water highly reactive to ozone. The subsequent reactivity to chlorine decreases with increasing ozone dosage prior to contact with chlorine. Furthermore, ozone had a half-life of 5 min in non-UV treated pool water whereas complete consumption of ozone was obtained in less than 2 min in UV treated pool water. The ozonation of UV-treated pool water induced the formation of some DBPs that are not commonly reported in this medium, in particular trichloronitromethane, which is noteworthy for its genotoxicity, though this issue was removed by UV treatment when repeated combined UV/ozone treatment interchanging with chlorination was conducted over a 24-h period. The discovered reaction could form the basis for a new treatment method for swimming pools.


Assuntos
Desinfetantes , Piscinas , Cloro , Desinfecção , Ozônio , Trialometanos , Poluentes Químicos da Água , Purificação da Água
20.
J Hazard Mater ; 323(Pt A): 299-310, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27396311

RESUMO

A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers and a settling tank. The average removal of target compounds ranged between 41% (4-methyl-1H-benzotriazole; 4TTR) and 88% (2-hydroxybenzothiazole; OHBTH). Except for 4TTR, degradation mainly occurred in the first bioreactor. Calculation of biodegradation constants in batch experiments and application of a model for describing micropollutants removal in the examined system showed that AS is mainly involved in biodegradation of OHBTH, 1H-benzotriazole (BTR) and xylytriazole (XTR), carriers contribute significantly on 4TTR biodegradation, while both types of biomass participate on elimination of 5-chlorobenzotriazole (CBTR) and 5-methyl-1H-benzotriazole (5TTR). Comparison of the HMBBR system with MBBR or AS systems from literature showed that the HMBBR system was more efficient for the biodegradation of the investigated chemicals. Biotransformation products of target compounds were identified using ultra high-performance liquid chromatography, coupled with a quadrupole-time-of-flight high-resolution mass spectrometer (UHPLC-QToF-MS). Twenty two biotransformation products were tentatively identified, while retention time denoted the formation of more polar transformation products than the parent compounds.


Assuntos
Benzotiazóis/química , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Triazóis/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Algoritmos , Biomassa , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...