Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Commun ; 15(1): 2687, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538594

RESUMO

Centrosomes and cilia are microtubule-based superstructures vital for cell division, signaling, and motility. The once thought hollow lumen of their microtubule core structures was recently found to hold a rich meshwork of microtubule inner proteins (MIPs). To address the outstanding question of how distinct MIPs evolved to recognize microtubule inner surfaces, we applied computational sequence analyses, structure predictions, and experimental validation to uncover evolutionarily conserved microtubule- and MIP-binding modules named NWE, SNYG, and ELLEn, and PYG and GFG-repeat by their signature motifs. These modules intermix with MT-binding DM10-modules and Mn-repeats in 24 Chlamydomonas and 33 human proteins. The modules molecular characteristics provided keys to identify elusive cross-species homologs, hitherto unknown human MIP candidates, and functional properties for seven protein subfamilies, including the microtubule seam-binding NWE and ELLEn families. Our work defines structural innovations that underpin centriole and axoneme assembly and demonstrates that MIPs co-evolved with centrosomes and cilia.


Assuntos
Cílios , Proteínas dos Microtúbulos , Humanos , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Centríolos/metabolismo
2.
Cell Rep ; 42(11): 113325, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889751

RESUMO

The RNA exosome is a versatile ribonuclease. In the nucleoplasm of mammalian cells, it is assisted by its adaptors the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. Via its association with the ARS2 and ZC3H18 proteins, NEXT/exosome is recruited to capped and short unadenylated transcripts. Conversely, PAXT/exosome is considered to target longer and adenylated substrates via their poly(A) tails. Here, mutational analysis of the core PAXT component ZFC3H1 uncovers a separate branch of the PAXT pathway, which targets short adenylated RNAs and relies on a direct ARS2-ZFC3H1 interaction. We further demonstrate that similar acidic-rich short linear motifs of ZFC3H1 and ZC3H18 compete for a common ARS2 epitope. Consequently, while promoting NEXT function, ZC3H18 antagonizes PAXT activity. We suggest that this organization of RNA decay complexes provides co-activation of NEXT and PAXT at loci with abundant production of short exosome substrates.


Assuntos
RNA Nuclear , Proteínas de Ligação a RNA , Animais , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mamíferos , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Nuclear/genética , Proteínas de Ligação a RNA/genética
3.
EMBO J ; 42(18): e111807, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37606072

RESUMO

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Assuntos
Proteínas Ativadoras de GTPase , Transdução de Sinais , Humanos , Proteínas Ativadoras de GTPase/genética , Transporte Biológico , Aminoácidos , Guanosina Trifosfato , Proteínas Musculares , Proteínas do Citoesqueleto
4.
Mol Cell ; 83(13): 2240-2257.e6, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329882

RESUMO

The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.


Assuntos
Proteínas Nucleares , Transcrição Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA
5.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403186

RESUMO

Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein-2 motors. Nematodes additionally employ a cell-type-specific kinesin-3 motor, KLP-6, which moves within cilia independently of IFT and regulates ciliary content and function. Here, we provide evidence that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured immortalized human retinal pigment epithelial (hTERT-RPE1) cells. Anterograde and retrograde intraciliary velocities of KIF13B were similar to those of IFT (as assayed using IFT172-eGFP), but intraciliary movement of KIF13B required its own motor domain and appeared to be cell-type specific. Our work provides the first demonstration of motor-driven, intraciliary movement by a vertebrate kinesin other than kinesin-2 motors.


Assuntos
Cílios , Cinesinas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transporte Biológico , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Flagelos/metabolismo , Humanos , Cinesinas/genética , Microtúbulos
6.
EMBO J ; 41(24): e112440, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36354106

RESUMO

Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.


Assuntos
Cílios , Dineínas , Cílios/metabolismo , Dineínas/metabolismo , Transporte Biológico , Sítios de Ligação , Modelos Estruturais , Flagelos/metabolismo
7.
Nucleic Acids Res ; 50(3): 1583-1600, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048984

RESUMO

Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3' end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Estabilidade de RNA , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA/genética , RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/metabolismo
8.
Elife ; 102021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259627

RESUMO

CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ciclo Celular/genética , Técnicas de Inativação de Genes , Humanos , Proteínas dos Microtúbulos/genética , Proteínas Nucleares/genética , Ubiquitinação
9.
Nat Commun ; 12(1): 2459, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911076

RESUMO

Oncogene-induced senescence provides a barrier against malignant transformation. However, it can also promote cancer through the secretion of a plethora of factors released by senescent cells, called the senescence associated secretory phenotype (SASP). We have previously shown that in proliferating cells, nuclear lncRNA MIR31HG inhibits p16/CDKN2A expression through interaction with polycomb repressor complexes and that during BRAF-induced senescence, MIR31HG is overexpressed and translocates to the cytoplasm. Here, we show that MIR31HG regulates the expression and secretion of a subset of SASP components during BRAF-induced senescence. The SASP secreted from senescent cells depleted for MIR31HG fails to induce paracrine invasion without affecting the growth inhibitory effect. Mechanistically, MIR31HG interacts with YBX1 facilitating its phosphorylation at serine 102 (p-YBX1S102) by the kinase RSK. p-YBX1S102 induces IL1A translation which activates the transcription of the other SASP mRNAs. Our results suggest a dual role for MIR31HG in senescence depending on its localization and points to the lncRNA as a potential therapeutic target in the treatment of senescence-related pathologies.


Assuntos
Envelhecimento/genética , Transformação Celular Neoplásica/genética , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , RNA Longo não Codificante/genética , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Humanos , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
10.
NPJ Breast Cancer ; 7(1): 2, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398005

RESUMO

Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer is a major clinical problem with poorly understood mechanisms. There is an unmet need for prognostic and predictive biomarkers to allow appropriate therapeutic targeting. We evaluated the mechanism by which minichromosome maintenance protein 3 (MCM3) influences endocrine resistance and its predictive/prognostic potential in ER+ breast cancer. We discovered that ER+ breast cancer cells survive tamoxifen and letrozole treatments through upregulation of minichromosome maintenance proteins (MCMs), including MCM3, which are key molecules in the cell cycle and DNA replication. Lowering MCM3 expression in endocrine-resistant cells restored drug sensitivity and altered phosphorylation of cell cycle regulators, including p53(Ser315,33), CHK1(Ser317), and cdc25b(Ser323), suggesting that the interaction of MCM3 with cell cycle proteins is an important mechanism of overcoming replicative stress and anti-proliferative effects of endocrine treatments. Interestingly, the MCM3 levels did not affect the efficacy of growth inhibitory by CDK4/6 inhibitors. Evaluation of MCM3 levels in primary tumors from four independent cohorts of breast cancer patients receiving adjuvant tamoxifen mono-therapy or no adjuvant treatment, including the Stockholm tamoxifen (STO-3) trial, showed MCM3 to be an independent prognostic marker adding information beyond Ki67. In addition, MCM3 was shown to be a predictive marker of response to endocrine treatment. Our study reveals a coordinated signaling network centered around MCM3 that limits response to endocrine therapy in ER+ breast cancer and identifies MCM3 as a clinically useful prognostic and predictive biomarker that allows personalized treatment of ER+ breast cancer patients.

11.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581127

RESUMO

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Assuntos
Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Animais , Antagomirs/farmacologia , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores , Modelos Animais de Doenças , Epilepsia , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteômica , Ratos , Ratos Sprague-Dawley , Convulsões/genética , Análise de Sistemas , Regulação para Cima/efeitos dos fármacos
12.
Genes Dev ; 34(15-16): 1065-1074, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561545

RESUMO

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Estruturas R-Loop , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Estresse Fisiológico , Inibidores da Topoisomerase I/farmacologia
13.
Proteomics ; 20(23): e1900361, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32558245

RESUMO

After a century of research, the human centrosome continues to fascinate. Based on immunofluorescence and confocal microscopy, an extensive inventory of the protein components of the human centrosome, and the centriolar satellites, with the important contribution of over 300 novel proteins localizing to these compartments is presented. A network of candidate centrosome proteins involved in ubiquitination, including six interaction partners of the Kelch-like protein 21, and an additional network of protein phosphatases, together supporting the suggested role of the centrosome as an interactive hub for cell signaling, is identified. Analysis of multi-localization across cellular organelles analyzed within the Human Protein Atlas (HPA) project shows how multi-localizing proteins are particularly overrepresented in centriolar satellites, supporting the dynamic nature and wide range of functions for this compartment. In summary, the spatial dissection of the human centrosome and centriolar satellites described here provides a comprehensive knowledgebase for further exploration of their proteomes.


Assuntos
Centrossomo , Proteoma , Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Centrossomo/metabolismo , Humanos , Organelas/metabolismo , Proteoma/metabolismo , Ubiquitinação
14.
Nucleic Acids Res ; 48(5): 2518-2530, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31950173

RESUMO

Recruitment of the human ribonucleolytic RNA exosome to nuclear polyadenylated (pA+) RNA is facilitated by the Poly(A) Tail eXosome Targeting (PAXT) connection. Besides its core dimer, formed by the exosome co-factor MTR4 and the ZFC3H1 protein, the PAXT connection remains poorly defined. By characterizing nuclear pA+-RNA bound proteomes as well as MTR4-ZFC3H1 containing complexes in conditions favoring PAXT assembly, we here uncover three additional proteins required for PAXT function: ZC3H3, RBM26 and RBM27 along with the known PAXT-associated protein, PABPN1. The zinc-finger protein ZC3H3 interacts directly with MTR4-ZFC3H1 and loss of any of the newly identified PAXT components results in the accumulation of PAXT substrates. Collectively, our results establish new factors involved in the turnover of nuclear pA+ RNA and suggest that these are limiting for PAXT activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Exossomos/metabolismo , Poli A/metabolismo , Estabilidade de RNA , RNA Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , Proteoma/metabolismo , Ribonucleoproteínas/metabolismo
15.
Nat Commun ; 10(1): 4176, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519908

RESUMO

The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity.


Assuntos
Autofagia/fisiologia , Centríolos/metabolismo , Centrossomo/metabolismo , Mitose/fisiologia , Autofagia/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Immunoblotting , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitose/genética , Simulação de Dinâmica Molecular
16.
EMBO Rep ; 20(10): e47625, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31432619

RESUMO

Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.


Assuntos
Cílios/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Padronização Corporal , Linhagem Celular , Células HEK293 , Humanos , Membranas/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Nucleotídeos/metabolismo , Ligação Proteica , Transporte Proteico , Telomerase/metabolismo
17.
Cell Cycle ; 17(17): 2146-2163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196736

RESUMO

Ionizing radiation (IR) causes DNA double-strand breaks (DSBs) and activates a versatile cellular response regulating DNA repair, cell-cycle progression, transcription, DNA replication and other processes. In recent years proteomics has emerged as a powerful tool deepening our understanding of this multifaceted response. In this study we use SILAC-based proteomics to specifically investigate dynamic changes in cytoplasmic protein abundance after ionizing radiation; we present in-depth bioinformatics analysis and show that levels of proteins involved in autophagy (cathepsins and other lysosomal proteins), proteasomal degradation (Ubiquitin-related proteins), energy metabolism (mitochondrial proteins) and particularly translation (ribosomal proteins and translation factors) are regulated after cellular exposure to ionizing radiation. Downregulation of no less than 68 ribosomal proteins shows rapid changes in the translation pattern after IR. Additionally, we provide evidence of compartmental cytosol-nuclear translocation of numerous DNA damage related proteins using protein correlation profiling. In conclusion, these results highlight unexpected cytoplasmic processes actively orchestrated after genotoxic insults and protein translocation from the cytoplasm to the nucleus as a fundamental regulatory mechanism employed to aid cell survival and preservation of genome integrity.


Assuntos
Autofagia/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Dano ao DNA/genética , Transporte Proteico/fisiologia , Sobrevivência Celular/fisiologia , Reparo do DNA/genética , Humanos , Proteínas/metabolismo , Radiação Ionizante
18.
EMBO Rep ; 19(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29712776

RESUMO

Autophagy is an essential catabolic process responsible for recycling of intracellular material and preserving cellular fidelity. Key to the autophagy pathway is the ubiquitin-like conjugation system mediating lipidation of Atg8 proteins and their anchoring to autophagosomal membranes. While regulation of autophagy has been characterized at the level of transcription, protein interactions and post-translational modifications, its translational regulation remains elusive. Here we describe a role for the conserved eukaryotic translation initiation factor 5A (eIF5A) in autophagy. Identified from a high-throughput screen, we find that eIF5A is required for lipidation of LC3B and its paralogs and promotes autophagosome formation. This feature is evolutionarily conserved and results from the translation of the E2-like ATG3 protein. Mechanistically, we identify an amino acid motif in ATG3 causing eIF5A dependency for its efficient translation. Our study identifies eIF5A as a key requirement for autophagosome formation and demonstrates the importance of translation in mediating efficient autophagy.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Fatores de Iniciação de Peptídeos/fisiologia , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Relacionadas à Autofagia/genética , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Enzimas de Conjugação de Ubiquitina/genética , Fator de Iniciação de Tradução Eucariótico 5A
19.
Cell Rep ; 22(10): 2584-2592, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514088

RESUMO

The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-ß/bone morphogenetic protein (TGF-ß/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-ß1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Centrossomo/metabolismo , Humanos , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
20.
Cell Rep ; 22(1): 44-58, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298432

RESUMO

Nuclear RNA metabolism is influenced by protein complexes connecting to both RNA-productive and -destructive pathways. The ZC3H18 protein binds the cap-binding complex (CBC), universally present on capped RNAs, while also associating with the nuclear exosome targeting (NEXT) complex, linking to RNA decay. To dissect ZC3H18 function, we conducted interaction screening and mutagenesis of the protein, which revealed a phosphorylation-dependent isoform. Surprisingly, the modified region of ZC3H18 associates with core histone proteins. Further examination of ZC3H18 function, by genome-wide analyses, demonstrated its impact on transcription of a subset of protein-coding genes. This activity requires the CBC-interacting domain of the protein, with some genes being also dependent on the NEXT- and/or histone-interacting domains. Our data shed light on the domain requirements of a protein positioned centrally in nuclear RNA metabolism, and they suggest that post-translational modification may modulate its function.


Assuntos
Núcleo Celular/metabolismo , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , RNA/biossíntese , Núcleo Celular/química , Núcleo Celular/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Células HeLa , Humanos , Mutagênese , Complexo Proteico Nuclear de Ligação ao Cap/química , Complexo Proteico Nuclear de Ligação ao Cap/genética , Domínios Proteicos , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...