Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychosoc Oncol ; 38(4): 406-417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31885337

RESUMO

Objectives: Identifying family members at-risk of poor bereavement outcomes poses a challenge for clinicians, resulting in inconsistent bereavement follow-up. The current quality improvement study tests a method for identification of at-risk family members, and describes follow-up they received from the bereavement service at Dana-Farber Cancer Institute.Design: A standardized bereavement risk assessment, referral and follow-up process was piloted as part of a quality improvement project using a plan-do-study-act approach (PDSA).Methods: A convenience sample of eleven clinical social workers completed paper and pencil bereavement risk-screening assessments using the Bereavement Risk-Screening Tool (BRST) on a sample of bereaved family members known to them. The results of the BRST were passed onto the bereavement program for follow-up.Findings: Eleven out of a total of 17 social workers participated in the study. Social workers screened 100% (52/52) of identified bereaved family members, corresponding to 52 patient deaths. Approximately half (28/52) were identified as being 'at-risk' of a poor bereavement outcome based on the social worker's consideration of the presence of potential risk-factors and their response to a prediction-type question about the bereaved individual's future coping. 'Lack of preparation for the death', 'unexpected death within the context of an illness' and 'witnessing a difficult death' were the most commonly identified risk factors. Of those individuals who were identified to be 'at-risk', 89% received an outreach attempt by telephone from the director of bereavement services, surpassing our project target of 80%. Conclusions: The BRST has the potential to help clinicians in health care settings identify those family members who might be considered at heightened risk of a poor bereavement outcome, facilitating early outreach and recommendations for support. The tool was easy to complete and helped streamline the referral process to the bereavement program.


Assuntos
Luto , Família/psicologia , Programas de Rastreamento/métodos , Neoplasias/mortalidade , Humanos , Melhoria de Qualidade , Medição de Risco
2.
J Vis Exp ; (138)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30176002

RESUMO

Because precision medicine is highly dependent on the accurate detection of biomarkers, there is an increasing need for standardized and robust technologies that measure RNA biomarkers in situ in clinical specimens. While grind-and-bind assays like RNAseq and quantitative RT-PCR enable highly sensitive gene expression measurements, they also require RNA extraction and thus prevent valuable expression analysis within the morphological tissue context. The in situ hybridization (ISH) assay described here can detect RNA target sequences as short as 50 nucleotides at single-nucleotide resolution and at the single-cell level. This assay is complementary to the previously developed commercial assay and enables sensitive and specific in situ detection of splice variants, short targets, and point mutations within the tissue. In this protocol, probes were designed to target unique exon junctions for two clinically important splice variants, EGFRvIII and METΔ14. The detection of short target sequences was demonstrated by the specific detection of CDR3 sequences of T-cell receptors α and ß in the Jurkat T-cell line. Also shown is the utility of this ISH assay for the distinction of RNA target sequences at single-nucleotide resolution (point mutations) through the visualization of EGFR L858R and KRAS G12A single-nucleotide variations in cell lines using automated staining platforms. In summary, the protocol shows a specialized RNA ISH assay that enables the detection of splice variants, short sequences, and mutations in situ for manual performance and on automated stainers.


Assuntos
Variação Genética/genética , Hibridização In Situ/métodos , Mutação Puntual/genética , RNA/genética , Humanos
3.
Eur Urol ; 73(5): 727-735, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28866255

RESUMO

BACKGROUND: Androgen receptor splice variant 7 (AR-V7) has been implicated in resistance to abiraterone and enzalutamide treatment in men with metastatic castration-resistant prostate cancer (mCRPC). Tissue- or cell-based in situ detection of AR-V7, however, has been limited by lack of specificity. OBJECTIVE: To address current limitations in precision measurement of AR-V7 by developing a novel junction-specific AR-V7 RNA in situ hybridization (RISH) assay compatible with automated quantification. DESIGN, SETTING, AND PARTICIPANTS: We designed a RISH method to visualize single splice junctions in cells and tissue. Using the validated assay for junction-specific detection of the full-length AR (AR-FL) and AR-V7, we generated quantitative data, blinded to clinical data, for 63 prostate tumor biopsies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We evaluated clinical correlates of AR-FL/AR-V7 measurements, including association with prostate-specific antigen progression-free survival (PSA-PFS) and clinical and radiographic progression-free survival (PFS), in a subset of patients starting treatment with abiraterone or enzalutamide following biopsy. RESULTS AND LIMITATIONS: Quantitative AR-FL/AR-V7 data were generated from 56 of the 63 (88.9%) biopsy specimens examined, of which 44 were mCRPC biopsies. Positive AR-V7 signals were detected in 34.1% (15/44) mCRPC specimens, all of which also co-expressed AR-FL. The median AR-V7/AR-FL ratio was 11.9% (range 2.7-30.3%). Positive detection of AR-V7 was correlated with indicators of high disease burden at baseline. Among the 25 CRPC biopsies collected before treatment with abiraterone or enzalutamide, positive AR-V7 detection, but not higher AR-FL, was significantly associated with shorter PSA-PFS (hazard ratio 2.789, 95% confidence interval 1.12-6.95; p=0.0081). CONCLUSIONS: We report for the first time a RISH method for highly specific and quantifiable detection of splice junctions, allowing further characterization of AR-V7 and its clinical significance. PATIENT SUMMARY: Higher AR-V7 levels detected and quantified using a novel method were associated with poorer response to abiraterone or enzalutamide in prostate cancer.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/genética , Receptores Androgênicos/genética , Idoso , Biópsia por Agulha , Intervalo Livre de Doença , Humanos , Imuno-Histoquímica , Hibridização In Situ/métodos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Análise de Sobrevida
4.
Mod Pathol ; 31(3): 385-394, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29052600

RESUMO

The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin-fixed, paraffin-embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells but are often insufficiently sensitive to detect the much lower abundance of light chains present in B-cells. We describe an ultrasensitive RNA in situ hybridization assay that has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain-restricted B-cells in 85 (42%) vs 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified restricted B-cells in 74 (89%) vs 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases owing to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphological features in formalin-fixed, paraffin-embedded tissues with a clinical sensitivity similar or superior to flow cytometry.


Assuntos
Linfócitos B/imunologia , Cadeias kappa de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/genética , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Linfoma de Células B/diagnóstico , RNA Mensageiro/análise , Biópsia , Células Clonais/imunologia , Citometria de Fluxo , Humanos , Linfoma de Células B/patologia , Sensibilidade e Especificidade
5.
Nat Commun ; 8(1): 1998, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222441

RESUMO

Intra-tumor heterogeneity (ITH) is a major underlying cause of therapy resistance and disease recurrence, and is a read-out of tumor growth. Current genetic ITH analysis methods do not preserve spatial context and may not detect rare subclones. Here, we address these shortfalls by developing and validating BaseScope-a novel mutation-specific RNA in situ hybridization assay. We target common point mutations in the BRAF, KRAS and PIK3CA oncogenes in archival colorectal cancer samples to precisely map the spatial and morphological context of mutant subclones. Computational modeling suggests that subclones must arise sufficiently early, or carry a considerable fitness advantage, to form large or spatially disparate subclones. Examples of putative treatment-resistant cells isolated in small topographical areas are observed. The BaseScope assay represents a significant technical advance for in situ mutation detection that provides new insight into tumor evolution, and could have ramifications for selecting patients for treatment.


Assuntos
Neoplasias Colorretais/genética , Análise Mutacional de DNA/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Hibridização In Situ/métodos , Recidiva Local de Neoplasia/genética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Evolução Clonal , Neoplasias Colorretais/patologia , Simulação por Computador , Humanos , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA/análise
6.
Cell Metab ; 26(1): 198-211.e5, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683287

RESUMO

Olfactory inputs help coordinate food appreciation and selection, but their role in systemic physiology and energy balance is poorly understood. Here we demonstrate that mice upon conditional ablation of mature olfactory sensory neurons (OSNs) are resistant to diet-induced obesity accompanied by increased thermogenesis in brown and inguinal fat depots. Acute loss of smell perception after obesity onset not only abrogated further weight gain but also improved fat mass and insulin resistance. Reduced olfactory input stimulates sympathetic nerve activity, resulting in activation of ß-adrenergic receptors on white and brown adipocytes to promote lipolysis. Conversely, conditional ablation of the IGF1 receptor in OSNs enhances olfactory performance in mice and leads to increased adiposity and insulin resistance. These findings unravel a new bidirectional function for the olfactory system in controlling energy homeostasis in response to sensory and hormonal signals.


Assuntos
Obesidade/metabolismo , Obesidade/fisiopatologia , Neurônios Receptores Olfatórios/metabolismo , Olfato , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Lipólise , Camundongos , Obesidade/etiologia , Neurônios Receptores Olfatórios/patologia , Receptores Adrenérgicos beta/metabolismo , Aumento de Peso
7.
Development ; 144(7): 1235-1241, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28351867

RESUMO

Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.


Assuntos
Fatores de Transcrição MEF2/metabolismo , Miocárdio/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Elementos Facilitadores Genéticos , Camundongos Transgênicos , Multimerização Proteica
8.
J Cell Biochem ; 117(10): 2201-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27191821

RESUMO

Biomarkers such as DNA, RNA, and protein are powerful tools in clinical diagnostics and therapeutic development for many diseases. Identifying RNA expression at the single cell level within the morphological context by RNA in situ hybridization provides a great deal of information on gene expression changes over conventional techniques that analyze bulk tissue, yet widespread use of this technique in the clinical setting has been hampered by the dearth of automated RNA ISH assays. Here we present an automated version of the RNA ISH technology RNAscope that is adaptable to multiple automation platforms. The automated RNAscope assay yields a high signal-to-noise ratio with little to no background staining and results comparable to the manual assay. In addition, the automated duplex RNAscope assay was able to detect two biomarkers simultaneously. Lastly, assay consistency and reproducibility were confirmed by quantification of TATA-box binding protein (TBP) mRNA signals across multiple lots and multiple experiments. Taken together, the data presented in this study demonstrate that the automated RNAscope technology is a high performance RNA ISH assay with broad applicability in biomarker research and diagnostic assay development. J. Cell. Biochem. 117: 2201-2208, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/genética , Fixadores/química , Formaldeído/química , Neoplasias/genética , Inclusão em Parafina/métodos , RNA/metabolismo , Automação , Biomarcadores Tumorais/análise , Células HeLa , Humanos , Hibridização In Situ , Neoplasias/patologia , RNA/genética
9.
Skelet Muscle ; 5: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789156

RESUMO

BACKGROUND: Skeletal muscle is the most abundant tissue in the body and is a major source of total energy expenditure in mammals. Skeletal muscle consists of fast and slow fiber types, which differ in their energy usage, contractile speed, and force generation. Although skeletal muscle plays a major role in whole body metabolism, the transcription factors controlling metabolic function in muscle remain incompletely understood. Members of the myocyte enhancer factor 2 (MEF2) family of transcription factors play crucial roles in skeletal muscle development and function. MEF2C is expressed in skeletal muscle during development and postnatally and is known to play roles in sarcomeric gene expression, fiber type control, and regulation of metabolic genes. METHODS: We generated mice lacking Mef2c exclusively in skeletal muscle using a conditional knockout approach and conducted a detailed phenotypic analysis. RESULTS: Mice lacking Mef2c in skeletal muscle on an outbred background are viable and grow to adulthood, but they are significantly smaller in overall body size compared to control mice and have significantly fewer slow fibers. When exercised in a voluntary wheel running assay, Mef2c skeletal muscle knockout mice aberrantly accumulate glycogen in their muscle, suggesting an impairment in normal glucose homeostasis. Consistent with this notion, Mef2c skeletal muscle knockout mice exhibit accelerated blood glucose clearance compared to control mice. CONCLUSIONS: These findings demonstrate that MEF2C function in skeletal muscle is important for metabolic homeostasis and control of overall body size.

10.
Cell Rep ; 10(4): 505-15, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25620701

RESUMO

Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Antígenos CD36/metabolismo , Ubiquinona/metabolismo , Animais , Ataxia/genética , Ataxia/metabolismo , Antígenos CD36/genética , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Oxirredução , Ácido Palmítico/metabolismo , Termogênese/genética , Termogênese/fisiologia , Ubiquinona/deficiência , Ubiquinona/genética
11.
Mol Aspects Med ; 34(2-3): 516-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23506886

RESUMO

The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.


Assuntos
Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/fisiologia , Ácidos Graxos/metabolismo , Modelos Animais , Família Multigênica/genética , Animais , Transporte Biológico/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...