Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 11(10): e12272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36239715

RESUMO

Activating mutations in the receptor KIT promote the dysregulated proliferation of human mast cells (huMCs). The resulting neoplastic huMCs secrete extracellular vesicles (EVs) that can transfer oncogenic KIT among other cargo into recipient cells. Despite potential contributions to diseases, KIT-containing EVs have not been thoroughly investigated. Here, we isolated and characterized KIT-EV subpopulations released by neoplastic huMCs using an immunocapture approach that selectively isolates EVs containing KIT in its proper topology. Immunocapture of EVs on KIT antibody-coated electron microscopy (EM) affinity grids allowed to assess the morphology and size of KIT-EVs. Immunoblot analysis demonstrated KIT-EVs have a distinct protein profile from KIT-depleted EVs, contain exosome and microvesicle markers, and are separated into these subtypes by ultracentrifugation. Cell treatment with sphingomyelinase inhibitors shifted the protein content among KIT-EV subtypes, suggesting different biogenesis routes. Proteomic analysis revealed huMC KIT-EVs are enriched in proteins involved in signalling, immune responses, and cell migration, suggesting diverse biological functions, and indicated neoplastic huMCs disseminate KIT via shuttling in heterogeneous microvesicle- and exosome-like EVs. Further, selective KIT-immunocapture will enable the enrichment of specific huMC-derived EVs from complex human biosamples and facilitate an understanding of their in vivo functions and potential to serve as biomarkers of specific biological pathologies.


Assuntos
Exossomos , Vesículas Extracelulares , Biomarcadores/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Mastócitos/metabolismo , Proteômica , Esfingomielina Fosfodiesterase/metabolismo
2.
Int J Mol Sci ; 21(3)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019134

RESUMO

Human tyrosinase (Tyr) is involved in pigment biosynthesis, where mutations in its corresponding gene TYR have been linked to oculocutaneous albinism 1, an autosomal recessive disorder. Although the enzymatic capabilities of Tyr have been well-characterized, the thermodynamic driving forces underlying melanogenesis remain unknown. Here, we analyze protein binding using the diphenol oxidase behavior of Tyr and van 't Hoff temperature-dependent analysis. Recombinant Tyr was expressed and purified using a combination of affinity and size-exclusion chromatography. Michaelis-Menten constants were measured spectrophotometrically from diphenol oxidase reactions of Tyr, using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate, at temperatures: 25, 31, 37, and 43 °C. Under the same conditions, the Tyr structure and the L-DOPA binding activity were simulated using 3 ns molecular dynamics and docking. The thermal Michaelis-Menten kinetics data were subjected to the van 't Hoff analysis and fitted with the computational model. The temperature-dependent analysis suggests that the association of L-DOPA with Tyr is a spontaneous enthalpy-driven reaction, which becomes unfavorable at the final step of dopachrome formation.


Assuntos
Di-Hidroxifenilalanina/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Humanos , Cinética , Monofenol Mono-Oxigenase/isolamento & purificação , Mutação , Oxirredutases/isolamento & purificação , Ligação Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...