Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biomech ; 165: 111969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394952

RESUMO

Proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) are challenging complications of long fusion constructs for the treatment of adult spinal deformity. The objective of this study is to understand the biomechanical stresses proximal to the upper instrumentation of a T10-pelvis fusion in a large patient cohort. The pre-fusion models were subject-specific thoracolumbar spine models that incorporate the height, weight, spine curvature, and muscle morphology of 250 individuals from the Framingham Heart Study Multidetector CT Study. To create post-fusion models, the subject-specific models were further modified to eliminate motion between the intervertebral joints from T10 to the pelvis. OpenSim analysis tools were used to calculate the medial lateral shear force, anterior posterior shear force, and compressive force on the T9 vertebra during the static postures. Differences between pre-fusion and post-fusion T9 biomechanics were consistent between increased segmental mobility and unchanged segmental mobility conditions. For all static postures, compression decreased (p < 0. 0005). Anterior-posterior shear force significantly increased (p < 0. 0005) during axial twist and significantly increased (p < 0. 0005) during trunk flexion. Medial lateral shear force significantly increased (p < 0. 0005) during axial twist. This computational study provided the first use of subject-specific models to investigate the biomechanics of long spinal fusions. Patients undergoing T10-Pelvis fusion were predicted to have increased shear forces and decreased compressive force at the T9 vertebra, independent of change in segmental mobility. The computational model shows potential for the investigation of spinal fusion biomechanics to reduce the risk of PJK or PJF.


Assuntos
Cifose , Curvaturas da Coluna Vertebral , Fusão Vertebral , Adulto , Humanos , Fusão Vertebral/efeitos adversos , Vértebras Torácicas , Pelve , Complicações Pós-Operatórias , Estudos Retrospectivos
2.
Ergonomics ; : 1-14, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389220

RESUMO

Back support exosuits aim to reduce tissue demands and thereby risk of injury and pain. However, biomechanical analyses of soft active exosuit designs have been limited. The objective of this study was to evaluate the effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading in participants performing stoop and squat lifts of 6 and 10 kg crates, using participant-specific musculoskeletal models. The exosuit did not change overall trunk motion but affected lumbo-pelvic motion slightly, and reduced peak compressive and shear vertebral loads at some levels, although shear increased slightly at others. This study indicates that soft active exosuits have limited kinematic effects during lifting, and can reduce spinal loading depending on the vertebral level. These results support the hypothesis that a soft exosuit can assist without limiting trunk movement or negatively impacting skeletal loading and have implications for future design and ergonomic intervention efforts.


Back support exosuits have the potential to reduce musculoskeletal workplace injuries. We examined and modelled the impact of a soft active exosuit on spine motion and loading. The exosuit generally reduced vertebral loading and did not inhibit trunk motion. Results of this study support future research to examine the exosuit as an ergonomic intervention.

3.
Sci Rep ; 14(1): 234, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168540

RESUMO

Optical motion capture (OMC) is considered the best available method for measuring spine kinematics, yet inertial measurement units (IMU) have the potential to collect data outside the laboratory. When combined with musculoskeletal modeling, IMU technology may be used to estimate spinal loads in real-world settings. To date, IMUs have not been validated for estimates of spinal movement and loading during both walking and running. Using OpenSim Thoracolumbar Spine and Ribcage models, we compare IMU and OMC estimates of lumbosacral (L5/S1) and thoracolumbar (T12/L1) joint angles, moments, and reaction forces during gait across six speeds for five participants. For comparisons, time series are ensemble averaged over strides. Comparisons between IMU and OMC ensemble averages have low normalized root mean squared errors (< 0.3 for 81% of comparisons) and high, positive cross-correlations (> 0.5 for 91% of comparisons), suggesting signals are similar in magnitude and trend. As expected, joint moments and reaction forces are higher during running than walking for IMU and OMC. Relative to OMC, IMU overestimates joint moments and underestimates joint reaction forces by 20.9% and 15.7%, respectively. The results suggest using a combination of IMU technology and musculoskeletal modeling is a valid means for estimating spinal movement and loading.


Assuntos
Corrida , Caminhada , Humanos , Fenômenos Biomecânicos , Marcha , Fenômenos Mecânicos
4.
J Biomech ; 161: 111821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805384

RESUMO

Musculoskeletal models are commonly used to estimate in vivo spinal loads under various loading conditions. Typically, participant-specific measured kinematics (PSMK) are coupled with participant-specific models, but obtaining PSMK data can be costly and infeasible in large studies or clinical practice. Thus, we evaluated two alternative methods to estimate spinal loads without PSMK: 1) ensemble average kinematics (EAK) based on kinematics from all participants; and 2) using separately measured individual kinematics (SMIK) from multiple other participants as inputs, then averaging the resulting loads. This study compares the dynamic spine loading patterns and peak loads in older adults performing five lifting tasks using PSMK, EAK and SMIK. Median root mean square errors of EAK and SMIK methods versus PSMK ranged from 18 to 72% body weight for compressive loads and from 2 to 25% body weight for shear loads, with median cross-correlations ranging from 0.931 to 0.991. The root mean square errors and cross-correlations between repeated PSMK trials fell within similar ranges. Compressive peak loads evaluated by EAK and SMIK were not different than PSMK in 12 of 15 cases, while by comparison repeated PSMK trials were not different in 13 of 15 cases. Overall, the resulting spine loading magnitudes and profiles using EAK or SMIK were not notably different than using a PSMK approach, and differences were not greater than between two PSMK trials. Thus, these findings indicate that these approaches may be used to make reasonable estimates of dynamic spinal loading without direct measurement of participant kinematics.


Assuntos
Vértebras Lombares , Coluna Vertebral , Humanos , Idoso , Fenômenos Biomecânicos , Cinética , Pressão , Peso Corporal , Suporte de Carga
5.
J Biomech ; 157: 111710, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437459

RESUMO

Trunk muscle size and location relative to the spine are key factors affecting their capacity to assist in trunk movement, strength, and function. There remains limited information on how age, weight and height affect these measurements across multiple spinal levels, and prior studies had limited samples in terms of size and ethnicity. In this study, we measured trunk muscles in coronal plane slices at T4 - L4 of CT scans acquired in 507 participants, aged 40-90 years, from the community-based Framingham Heart Study. Mixed-effects linear regressions, stratified by sex, determined the contributions of age, height and weight, to muscle cross-sectional area (CSA), the distance from the vertebral body centroid (CD), and the in-plane angle of the line between the vertebral body and the muscle centroids (CA). Muscle CSA decreased with higher age by an average of -0.8% per year, but weight (average 0.8% per kg) and height (average -0.05% per cm) had mixed results, with both positive and negative effects depending on muscle group and level. Muscle CD increased with weight by an average of 0.3% per kg, but had mixed effects for age (average 0.8% per year) and height (average 0.1% per cm). Muscle CA had mixed associations with age (average 0.05% per year), weight (average 0.01% per kg) and height (average -0.05% per cm). A prediction program created with these results provides a simple approach for estimating probable values for trunk muscle size and position in the absence of medical imaging.


Assuntos
Músculo Esquelético , Coluna Vertebral , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Músculo Esquelético/fisiologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiologia , Tronco , Tomografia Computadorizada por Raios X , Modelos Lineares
6.
Ann Biomed Eng ; 51(10): 2313-2322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37353715

RESUMO

Musculoskeletal models can uniquely estimate in vivo demands and injury risk. In this study, we aimed to compare muscle activations from subject-specific thoracolumbar spine OpenSim models with recorded muscle activity from electromyography (EMG) during five dynamic tasks. Specifically, 11 older adults (mean = 65 years, SD = 9) lifted a crate weighted to 10% of their body mass in axial rotation, 2-handed sagittal lift, 1-handed sagittal lift, and lateral bending, and simulated a window opening task. EMG measurements of back and abdominal muscles were directly compared to equivalent model-predicted activity for temporal similarity via maximum absolute normalized cross-correlation (MANCC) coefficients and for magnitude differences via root-mean-square errors (RMSE), across all combinations of participants, dynamic tasks, and muscle groups. We found that across most of the tasks the model reasonably predicted temporal behavior of back extensor muscles (median MANCC = 0.92 ± 0.07) but moderate temporal similarity was observed for abdominal muscles (median MANCC = 0.60 ± 0.20). Activation magnitude was comparable to previous modeling studies, and median RMSE was 0.18 ± 0.08 for back extensor muscles. Overall, these results indicate that our thoracolumbar spine model can be used to estimate subject-specific in vivo muscular activations for these dynamic lifting tasks.


Assuntos
Músculo Esquelético , Coluna Vertebral , Humanos , Idoso , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
7.
Pain Med ; 24(Suppl 1): S48-S60, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36315101

RESUMO

OBJECTIVE: Biomechanics represents the common final output through which all biopsychosocial constructs of back pain must pass, making it a rich target for phenotyping. To exploit this feature, several sites within the NIH Back Pain Consortium (BACPAC) have developed biomechanics measurement and phenotyping tools. The overall aims of this article were to: 1) provide a narrative review of biomechanics as a phenotyping tool; 2) describe the diverse array of tools and outcome measures that exist within BACPAC; and 3) highlight how leveraging these technologies with the other data collected within BACPAC could elucidate the relationship between biomechanics and other metrics used to characterize low back pain (LBP). METHODS: The narrative review highlights how biomechanical outcomes can discriminate between those with and without LBP, as well as among levels of severity of LBP. It also addresses how biomechanical outcomes track with functional improvements in LBP. Additionally, we present the clinical use case for biomechanical outcome measures that can be met via emerging technologies. RESULTS: To answer the need for measuring biomechanical performance, our "Results" section describes the spectrum of technologies that have been developed and are being used within BACPAC. CONCLUSION AND FUTURE DIRECTIONS: The outcome measures collected by these technologies will be an integral part of longitudinal and cross-sectional studies conducted in BACPAC. Linking these measures with other biopsychosocial data collected within BACPAC increases our potential to use biomechanics as a tool for understanding the mechanisms of LBP, phenotyping unique LBP subgroups, and matching these individuals with an appropriate treatment paradigm.


Assuntos
Dor Lombar , Humanos , Dor Lombar/diagnóstico , Estudos Transversais , Fenômenos Biomecânicos , Literatura de Revisão como Assunto
8.
Appl Ergon ; 106: 103869, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36055036

RESUMO

Static biomechanical simulations are sometimes used to estimate in vivo kinetic demands because they can be solved efficiently, but this ignores any potential inertial effects. To date, comparisons between static and dynamic analyses of spinal demands have been limited to lumbar joint differences in young males performing sagittal lifts. Here we compare static and dynamic vertebral compressive and shear force estimates during axial, lateral, and sagittal lifting tasks across all thoracic and lumbar vertebrae in older men and women. Participant-specific thoracolumbar full-body musculoskeletal models estimated vertebral forces from recorded kinematics both with and without consideration of dynamic effects, at an identified frame of peak vertebral loading. Static analyses under-predicted dynamic compressive and resultant shear forces, by an average of about 16% for all three lifts across the thoracic and lumbar spine but were highly correlated with dynamic forces (average r2 > .95). The study outcomes have the potential to enable standard clinical and occupational estimates using static analyses.


Assuntos
Vértebras Lombares , Postura , Masculino , Humanos , Feminino , Idoso , Suporte de Carga , Fenômenos Biomecânicos , Região Lombossacral , Modelos Biológicos
9.
Front Bioeng Biotechnol ; 10: 866970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992350

RESUMO

Vertebrae containing osteolytic and osteosclerotic bone metastases undergo pathologic vertebral fracture (PVF) when the lesioned vertebrae fail to carry daily loads. We hypothesize that task-specific spinal loading patterns amplify the risk of PVF, with a higher degree of risk in osteolytic than in osteosclerotic vertebrae. To test this hypothesis, we obtained clinical CT images of 11 cadaveric spines with bone metastases, estimated the individual vertebral strength from the CT data, and created spine-specific musculoskeletal models from the CT data. We established a musculoskeletal model for each spine to compute vertebral loading for natural standing, natural standing + weights, forward flexion + weights, and lateral bending + weights and derived the individual vertebral load-to-strength ratio (LSR). For each activity, we compared the metastatic spines' predicted LSRs with the normative LSRs generated from a population-based sample of 250 men and women of comparable ages. Bone metastases classification significantly affected the CT-estimated vertebral strength (Kruskal-Wallis, p < 0.0001). Post-test analysis showed that the estimated vertebral strength of osteosclerotic and mixed metastases vertebrae was significantly higher than that of osteolytic vertebrae (p = 0.0016 and p = 0.0003) or vertebrae without radiographic evidence of bone metastasis (p = 0.0010 and p = 0.0003). Compared with the median (50%) LSRs of the normative dataset, osteolytic vertebrae had higher median (50%) LSRs under natural standing (p = 0.0375), natural standing + weights (p = 0.0118), and lateral bending + weights (p = 0.0111). Surprisingly, vertebrae showing minimal radiographic evidence of bone metastasis presented significantly higher median (50%) LSRs under natural standing (p < 0.0001) and lateral bending + weights (p = 0.0009) than the normative dataset. Osteosclerotic vertebrae had lower median (50%) LSRs under natural standing (p < 0.0001), natural standing + weights (p = 0.0005), forward flexion + weights (p < 0.0001), and lateral bending + weights (p = 0.0002), a trend shared by vertebrae with mixed lesions. This study is the first to apply musculoskeletal modeling to estimate individual vertebral loading in pathologic spines and highlights the role of task-specific loading in augmenting PVF risk associated with specific bone metastatic types. Our finding of high LSRs in vertebrae without radiologically observed bone metastasis highlights that patients with metastatic spine disease could be at an increased risk of vertebral fractures even at levels where lesions have not been identified radiologically.

11.
Front Bioeng Biotechnol ; 9: 751155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869263

RESUMO

Symptomatic lumbar spinal stenosis is a leading cause of pain and mobility limitation in older adults. It is clinically believed that patients with lumbar spinal stenosis adopt a flexed trunk posture or bend forward and alter their gait pattern to improve tolerance for walking. However, a biomechanical assessment of spine posture and motion during walking is broadly lacking in these patients. The purpose of this study was to evaluate lumbar spine and pelvic sagittal angles and lumbar spine compressive loads in standing and walking and to determine the effect of pain and neurogenic claudication symptoms in patients with symptomatic lumbar spinal stenosis. Seven participants with symptomatic lumbar spinal stenosis, aged 44-82, underwent a 3D opto-electronic motion analysis during standing and walking trials in asymptomatic and symptomatic states. Passive reflective marker clusters (four markers each) were attached to participants at T1, L1, and S2 levels of the spine, with additional reflective markers at other spinal levels, as well as the head, pelvis, and extremities. Whole-body motion data was collected during standing and walking trials in asymptomatic and symptomatic states. The results showed that the spine was slightly flexed during walking, but this was not affected by symptoms. Pelvic tilt was not different when symptoms were present, but suggests a possible effect of more forward tilt in both standing (p = 0.052) and walking (p = 0.075). Lumbar spine loading during symptomatic walking was increased by an average of 7% over asymptomatic walking (p = 0.001). Our results did not show increased spine flexion (adopting a trunk-flexed posture) and only indicate a trend for a small forward shift of the pelvis during both symptomatic walking and standing. This suggests that provocation of symptoms in these patients does not markedly affect their normal gait kinematics. The finding of increased spine loading with provocation of symptoms supports our hypothesis that spine loading plays a role in limiting walking function in patients with lumbar spinal stenosis, but additional work is needed to understand the biomechanical cause of this increase.

12.
Front Bioeng Biotechnol ; 9: 688041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395398

RESUMO

Motion analysis is increasingly applied to spine musculoskeletal models using kinematic constraints to estimate individual intervertebral joint movements, which cannot be directly measured from the skin surface markers. Traditionally, kinematic constraints have allowed a single spinal degree of freedom (DOF) in each direction, and there has been little examination of how different kinematic constraints affect evaluations of spine motion. Thus, the objective of this study was to evaluate the performance of different kinematic constraints for inverse kinematics analysis. We collected motion analysis marker data in seven healthy participants (4F, 3M, aged 27-67) during flexion-extension, lateral bending, and axial rotation tasks. Inverse kinematics analyses were performed on subject-specific models with 17 thoracolumbar joints allowing 51 rotational DOF (51DOF) and corresponding models including seven sets of kinematic constraints that limited spine motion from 3 to 9DOF. Outcomes included: (1) root mean square (RMS) error of spine markers (measured vs. model); (2) lag-one autocorrelation coefficients to assess smoothness of angular motions; (3) maximum range of motion (ROM) of intervertebral joints in three directions of motion (FE, LB, AR) to assess whether they are physiologically reasonable; and (4) segmental spine angles in static ROM trials. We found that RMS error of spine markers was higher with constraints than without (p < 0.0001) but did not notably improve kinematic constraints above 6DOF. Compared to segmental angles calculated directly from spine markers, models with kinematic constraints had moderate to good intraclass correlation coefficients (ICCs) for flexion-extension and lateral bending, though weak to moderate ICCs for axial rotation. Adding more DOF to kinematic constraints did not improve performance in matching segmental angles. Kinematic constraints with 4-6DOF produced similar levels of smoothness across all tasks and generally improved smoothness compared to 9DOF or unconstrained (51DOF) models. Our results also revealed that the maximum joint ROMs predicted using 4-6DOF constraints were largely within physiologically acceptable ranges throughout the spine and in all directions of motions. We conclude that a kinematic constraint with 5DOF can produce smooth spine motions with physiologically reasonable joint ROMs and relatively low marker error.

13.
J Bone Miner Res ; 36(4): 704-711, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33253414

RESUMO

Vertebral fractures (VFx) are common among older adults. Epidemiological studies report high occurrence of VFx at mid-thoracic and thoracolumbar regions of the spine; however, reasons for this observation remain poorly understood. Prior reports of high ratios of spinal loading to vertebral strength in the thoracolumbar region suggest a possible biomechanical explanation. However, no studies have evaluated load-to-strength ratios (LSRs) throughout the spine for a large number of activities in a sizeable cohort. Thus, we performed a cross-sectional study in a sample of adult men and women from a population-based cohort to: 1) determine which activities cause the largest vertebral LSRs, and 2) examine patterns of LSRs along the spine for these high-load activities. We used subject-specific musculoskeletal models of the trunk to determine vertebral compressive loads for 109 activities in 250 individuals (aged 41 to 90 years, 50% women) from the Framingham Heart Study. Vertebral compressive strengths from T4 to L4 were calculated from computed tomography-based vertebral size and bone density measurements. We determined which activities caused maximum LSRs at each of these spinal levels. We identified nine activities that accounted for >95% of the maximum LSRs overall and at least 89.6% at each spinal level. The activity with the highest LSR varied by spinal level, and three distinct spinal regions could be identified by the activity producing maximum LSRs: lateral bending with a weight in one hand (upper thoracic), holding weights with elbows flexed (lower thoracic), and forward flexion with weight (lumbar). This study highlights the need to consider a range of lifting, holding, and non-symmetric activities when evaluating vertebral LSRs. Moreover, we identified key activities that produce higher loading in multiple regions of the spine. These results provide the first guidance on what activities to consider when evaluating vertebral load-to-strength ratios in future studies, including those examining dynamic motions and the biomechanics of VFx. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas da Coluna Vertebral , Coluna Vertebral , Idoso , Densidade Óssea , Força Compressiva , Estudos Transversais , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/epidemiologia , Coluna Vertebral/diagnóstico por imagem
14.
JOR Spine ; 3(3): e1120, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015581

RESUMO

Thoracic kyphosis varies among healthy adults and typically increases with age. Excessive kyphosis (hyperkyphosis) is associated with negative health. Spinal alignment also affects spine loading, with implications for conditions such as vertebral fractures and back pain. Valid measurements of kyphosis are necessary for clinical and research assessment of age-related posture changes, and to support improved biomechanical understating of spine conditions. Independent validation of non-radiographic techniques, however, remains limited. The goal of this study was to compare standing radiographic kyphosis measurements with non-radiographic measurements and predictions of thoracic kyphosis using flexicurve and motion analysis markers, in order to determine their validity. Thirteen non-radiographic measures of thoracic kyphosis were obtained in each of 40 adult subjects who also underwent standing radiographs of the thoracic spine. Measures included estimates derived by fitting of polynomials or circles to the non-radiographic data, as well as predictions calculated using previously published methods. Intra-class correlations (ICC) and root-mean square errors (RMSEs) were calculated between radiographic and non-radiographic measures to determine validity. Most non-radiographic estimates of kyphosis show similar, weak to moderate levels of validity when compared to radiographic measurements, and RMSEs ranging from 8.0° to 20.8°. Unbiased estimates of radiographic measurements with moderate to good ICCs were identified, however, based on marker measurements, and new prediction equations were created with similar validity that also account for age and body habitus. Clinical significance: These non-radiographic measurements of thoracic kyphosis can be applied to clinical practice or to clinical studies with recognition of specific limitations.

15.
J Biomech ; 112: 110044, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32977297

RESUMO

This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24-74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45˚ trunk flexion, 15˚ trunk extension, 20˚ lateral bend to the right, and 45˚ axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC = 0.79-0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46-0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.


Assuntos
Postura , Coluna Vertebral , Adulto , Idoso , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Reprodutibilidade dos Testes , Rotação , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-32195239

RESUMO

The pathomechanisms of curve progression in adolescent idiopathic scoliosis (AIS) remain poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information toward the improvement of current treatment strategies. This work therefore aimed at using subject-specific musculoskeletal full-body models of patients with AIS to predict segmental compressive forces around the curve apex and to investigate how these forces are affected by simulated load carrying. Models were created based on spatially calibrated biplanar radiographic images from 24 patients with mild to moderate AIS and validated by comparing predictions of paravertebral muscle activity with reported values from in vivo studies. Spinal compressive forces were predicted during unloaded upright standing as well as standing with external loads of 10, 15, and 20% of body weight (BW) applied to the scapulae to simulate carrying a backpack in the regular way on the back as well as in front of the body and over the shoulder on the concave and convex sides of the scoliotic curve. The predicted muscle activities around the curve apex were higher on the convex side for the erector spinae (ES) and multifidi (MF) muscles, which was comparable to the EMG-based in vivo measurements from the literature. In terms of spinal loading, the implementation of spinal deformity resulted in a 10% increase of compressive force at the curve apex during unloaded upright standing. Apical compressive forces further increased by 50-62% for a simulated 10% BW load and by 77-94% and 103-128% for 15% and 20% BW loads, respectively. Moreover, load-dependent compressive force increases were the lowest in the regular backpack and the highest in the frontpack and convex conditions, with concave side-carrying forces in between. The predictions indicated increased segmental compressive forces during unloaded upright standing, which could be ascribed to the scoliotic deformation. When carrying loads, compressive forces further increased depending on the carrying mode and the weight of the load. These results can be used as a basis for further studies investigating segmental loading in AIS patients during functional activities. Models can thereby be created using the same approach as proposed in this study.

17.
J Biomech ; 100: 109579, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31911050

RESUMO

Spinal intervertebral joints are complex structures allowing motion in multiple directions, and many experimental studies have reported moment-rotation response. However, experimental methods, reporting of results, and levels of the spine tested vary widely, and a comprehensive assessment of moment-rotation response across all levels of the spine is lacking. This review aims to characterize moment-rotation response in a consistent manner for all levels of the human spine. A literature search was conducted in PubMed for moment versus rotation data from mechanical testing of intact human cadaveric intervertebral joint specimens in flexion-extension, lateral bending, and axial rotation. A total of 45 studies were included, providing data from testing of an estimated 1,648 intervertebral joints from 518 human cadavers. We used mixed-effects regression analysis to create 75 regression models of moment-rotation response (25 intervertebral joints × 3 directions). We found that a cubic polynomial model provides a good representation of the moment-rotation behavior of most intervertebral joints, and that compressive loading increases rotational stiffness throughout the spine in all directions. The results allow for the direct evaluation of intervertebral ranges of motion across the whole of the spine for given loading conditions. The random-effects outcomes, representing standard deviations of the model coefficients across the dataset, can aid understanding of normal variations in moment-rotation responses. Overall these results fill a large gap, providing the first realistic and comprehensive representations of moment-rotation behavior at all levels of the spine, with broad implications for surgical planning, medical device design, computational modeling, and understanding of spine biomechanics.


Assuntos
Articulações/fisiologia , Fenômenos Mecânicos , Rotação , Coluna Vertebral/fisiologia , Fenômenos Biomecânicos , Humanos , Análise de Regressão
18.
Med Sci Sports Exerc ; 52(1): 105-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31343522

RESUMO

PURPOSE: Individuals who are obese, and older individuals, exhibit gait alterations that may result, in part, from walking with greater effort relative to their maximum strength capacity. The goal of this study was to investigate obesity-related and age-related differences in relative effort during gait. METHODS: Four groups of women completed the study, including 10 younger healthy-weight, 10 younger obese, 10 older healthy-weight, and 9 older obese women. The protocol included strength measurements at the hip, knee, and ankle in both flexion and extension, and gait trials under self-selected and constrained (1.5 m·s gait speed and 0.65-m step length) conditions. Relative effort was calculated as the ratio of joint torques during gait, and strength from a subject-specific model that predicted strength as a function of joint angle. RESULTS: Relative effort during self-selected gait was higher among women who were obese in knee extension (P = 0.028) and ankle plantar flexion (P = 0.013). Although both joint torques and strength were higher among women who were obese, these increases in relative effort were attributed to greater obesity-related increases in joint torques than strength. Relative effort was also higher among older women in hip flexion (P < 0.001) and knee extension (P = 0.008), and attributed to age-related strength loss. Results were generally similar between self-selected and constrained gait, indicating the greater relative effort among women who were obese and older women was not attributed to differences in gait spatiotemporal characteristics. CONCLUSIONS: Women who were obese, as well as older women, walk with greater relative effort. These results may help explain the compromised walking ability among these individuals.


Assuntos
Envelhecimento/fisiologia , Obesidade/fisiopatologia , Esforço Físico/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tornozelo/fisiologia , Feminino , Análise da Marcha , Quadril/fisiologia , Humanos , Joelho/fisiologia , Força Muscular/fisiologia , Velocidade de Caminhada , Adulto Jovem
19.
J Biomech ; 102: 109305, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31471110

RESUMO

Currently available musculoskeletal inverse-dynamics thoracolumbar spine models are entirely based on data from adults and might therefore not be applicable for simulations in children and adolescents. In addition, these models lack lower extremities, which are required for comprehensive evaluations of functional activities or therapeutic exercises. We therefore created OpenSim-based musculoskeletal full-body models including a detailed thoracolumbar spine for children and adolescents aged 6-18 years and validated by comparing model predictions to in vivo data. After combining our recently developed adult thoracolumbar spine model with a lower extremity model, children and adolescent models were created for each year of age by adjusting segmental length and mass distribution, center of mass positions and moments of inertia of the major body segments as well as sagittal pelvis and spine alignment based on literature data. Similarly, muscle strength properties were adjusted based on CT-derived cross-sectional area measurements. Simulations were conducted from in vivo studies reported in the literature involving children and adolescents evaluating maximum trunk muscle strength (MTMS), lumbar disc compressibility (LDC), intradiscal pressure (IDP) and trunk muscle activity (MA). Model predictions correlated highly with in vivo data (MTMS: r ≥ 0.82, p ≤ 0.03; LDC: r = 0.77, p < 0.001; IDP: r ≥ 0.78, p < 0.001; MA: r ≥ 0.90, p < 0.001), indicating suitability for the reasonably accurate prediction of maximal trunk muscle strength, segmental loading and trunk muscle activity in children and adolescents. When aiming at investigating children or adolescents with pathologies such as idiopathic scoliosis, our models can serve as a basis for the creation of deformed spine models and for comparative purposes.


Assuntos
Vértebras Lombares/anatomia & histologia , Modelos Anatômicos , Músculos/anatomia & histologia , Vértebras Torácicas/anatomia & histologia , Adolescente , Adulto , Criança , Feminino , Humanos , Vértebras Lombares/fisiologia , Masculino , Força Muscular , Músculos/fisiologia , Vértebras Torácicas/fisiologia , Tronco/fisiologia , Suporte de Carga
20.
J Bone Miner Res ; 35(2): 269-276, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670861

RESUMO

Although the negative impact of long-duration spaceflight on spine BMD has been reported, its impact on vertebral strength and risk of vertebral fracture remains unknown. This study examined 17 crewmembers with long-duration service on the International Space Station in whom computed tomography (CT) scans of the lumbar spine (L1 and L2 ) were collected preflight, immediately postflight and 1 to 4 years after return to Earth. We assessed vertebral strength via CT-based finite element analysis (CT-FEA) and spinal loading during different activities via subject-specific musculoskeletal models. Six months of spaceflight reduced vertebral strength by 6.1% (-2.3%, -8.7%) (median [interquartile range]) compared to preflight (p < 0.05), with 65% of subjects experiencing deficits of greater than 5%, and strengths were not recovered up to 4 years after the mission. This decline in vertebral strength exceeded (p < 0.05) the 2.2% (-1.3%, -6.0%) decline in lumbar spine DXA-BMD. Further, the subject-specific changes in vertebral strength were not correlated with the changes in DXA-BMD. Although spinal loading increased slightly postflight, the ratio of vertebral compressive load to vertebral strength for typical daily activities remained well below a value of 1.0, indicating a low risk of vertebral fracture despite the loss in vertebral strength. However, for more strenuous activity, the postflight load-to-strength ratios ranged from 0.3 to 0.7, indicating a moderate risk of vertebral fracture in some individuals. Our findings suggest persistent deficits in vertebral strength following long-duration spaceflight, and although risk of vertebral fracture remains low for typical activities, the risk of vertebral fracture is notable in some crewmembers for strenuous exercise requiring maximal effort. © 2019 American Society for Bone and Mineral Research.


Assuntos
Voo Espacial , Fraturas da Coluna Vertebral , Densidade Óssea , Análise de Elementos Finitos , Humanos , Vértebras Lombares/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/epidemiologia , Coluna Vertebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...