Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 599(7883): 120-124, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34646011

RESUMO

Antibiotics are used to fight pathogens but also target commensal bacteria, disturbing the composition of gut microbiota and causing dysbiosis and disease1. Despite this well-known collateral damage, the activity spectrum of different antibiotic classes on gut bacteria remains poorly characterized. Here we characterize further 144 antibiotics from a previous screen of more than 1,000 drugs on 38 representative human gut microbiome species2. Antibiotic classes exhibited distinct inhibition spectra, including generation dependence for quinolones and phylogeny independence for ß-lactams. Macrolides and tetracyclines, both prototypic bacteriostatic protein synthesis inhibitors, inhibited nearly all commensals tested but also killed several species. Killed bacteria were more readily eliminated from in vitro communities than those inhibited. This species-specific killing activity challenges the long-standing distinction between bactericidal and bacteriostatic antibiotic classes and provides a possible explanation for the strong effect of macrolides on animal3-5 and human6,7 gut microbiomes. To mitigate this collateral damage of macrolides and tetracyclines, we screened for drugs that specifically antagonized the antibiotic activity against abundant Bacteroides species but not against relevant pathogens. Such antidotes selectively protected Bacteroides species from erythromycin treatment in human-stool-derived communities and gnotobiotic mice. These findings illluminate the activity spectra of antibiotics in commensal bacteria and suggest strategies to circumvent their adverse effects on the gut microbiota.


Assuntos
Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/classificação , Bactérias/classificação , Bactérias Anaeróbias/efeitos dos fármacos , Bacteroides/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Dicumarol/farmacologia , Eritromicina/farmacologia , Fezes/microbiologia , Feminino , Vida Livre de Germes , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Microbiota/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Tetraciclinas/farmacologia
2.
Nature ; 555(7698): 623-628, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29555994

RESUMO

A few commonly used non-antibiotic drugs have recently been associated with changes in gut microbiome composition, but the extent of this phenomenon is unknown. Here, we screened more than 1,000 marketed drugs against 40 representative gut bacterial strains, and found that 24% of the drugs with human targets, including members of all therapeutic classes, inhibited the growth of at least one strain in vitro. Particular classes, such as the chemically diverse antipsychotics, were overrepresented in this group. The effects of human-targeted drugs on gut bacteria are reflected on their antibiotic-like side effects in humans and are concordant with existing human cohort studies. Susceptibility to antibiotics and human-targeted drugs correlates across bacterial species, suggesting common resistance mechanisms, which we verified for some drugs. The potential risk of non-antibiotics promoting antibiotic resistance warrants further exploration. Our results provide a resource for future research on drug-microbiome interactions, opening new paths for side effect control and drug repurposing, and broadening our view of antibiotic resistance.


Assuntos
Bactérias/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Antipsicóticos/farmacologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Estudos de Coortes , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Viabilidade Microbiana/efeitos dos fármacos , Reprodutibilidade dos Testes , Simbiose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...