Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 101: 188-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26409781

RESUMO

Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 µM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory.


Assuntos
Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Serotoninérgicos/farmacologia , Serotonina/farmacologia , Animais , Biofísica , Citalopram/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Hipocampo/fisiologia , Técnicas In Vitro , Piperazinas/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar
2.
EMBO J ; 29(1): 209-21, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19910924

RESUMO

TDP-43 is an RNA/DNA-binding protein implicated in transcriptional repression and mRNA processing. Inclusions of TDP-43 are hallmarks of frontotemporal dementia and amyotrophic lateral sclerosis. Besides aggregation of TDP-43, loss of nuclear localization is observed in disease. To identify relevant targets of TDP-43, we performed expression profiling. Thereby, histone deacetylase 6 (HDAC6) downregulation was discovered on TDP-43 silencing and confirmed at the mRNA and protein level in human embryonic kidney HEK293E and neuronal SH-SY5Y cells. This was accompanied by accumulation of the major HDAC6 substrate, acetyl-tubulin. HDAC6 levels were restored by re-expression of TDP-43, dependent on RNA binding and the C-terminal protein interaction domains. Moreover, TDP-43 bound specifically to HDAC6 mRNA arguing for a direct functional interaction. Importantly, in vivo validation in TDP-43 knockout Drosophila melanogaster confirmed the specific downregulation of HDAC6. HDAC6 is necessary for protein aggregate formation and degradation. Indeed, HDAC6-dependent reduction of cellular aggregate formation and increased cytotoxicity of polyQ-expanded ataxin-3 were found in TDP-43 silenced cells. In conclusion, loss of functional TDP-43 causes HDAC6 downregulation and might thereby contribute to pathogenesis.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desacetilase 6 de Histona , Humanos , Neurônios/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...