Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 572-582, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367575

RESUMO

HYPOTHESIS: Microcapsule formation, following internal phase separation by solvent evaporation, is controlled by two main factors of thermodynamic and kinetic origin. Morphology prediction has previously focused on the final thermodynamical state in terms of spreading conditions, limiting the prediction accuracy. By additionally considering kinetic effects as the emulsion droplet evolves through the two-phase region of its ternary phase diagram during solvent evaporation, this should enhance prediction accuracy and explain a wider range of morphologies. EXPERIMENTS: Dynamical interfacial tensions, and thereby spreading coefficients, during the formation of poly(methyl methacrylate) and poly(d,l-lactic-co-glycolic acid) microcapsules were measured by first establishing the boundaries and tie-lines of the ternary system in the emulsion droplets. Kinetic effects during the formation were investigated by varying the solvent evaporation rate and hence the time for polymer shell formation equilibration. The theory was validated by comparing predicted morphologies to microscopic snapshots of intermediate and final morphologies. FINDINGS: The proposed theory explained both intermediate acorn and core-shell morphologies, where a late transition from acorn to core-shell produced microcapsules containing highly off-centered cores. By considering the kinetic factors, the formulation could be altered from yielding kinetically frozen acorns to core-shell and from yielding multicore to single core microcapsules.

2.
Langmuir ; 39(49): 18003-18010, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976413

RESUMO

Stimulus-responsive microcapsules pose an opportunity to achieve controlled release of the entire load instantaneously upon exposure to an external stimulus. Core-shell microcapsules based on the polyanhydride poly(bis(2-carboxyphenyl)adipate) as a shell were formulated in this work to encapsulate the model active substance pyrene and enable a pH-controlled triggered release. A remarkably narrow triggering pH interval was found where a change in pH from 6.4 to 6.9 allowed for release of the entire core content within seconds. The degradation kinetics of the shell were measured by both spectrophotometric detection of degradation products and mass changes by quartz crystal microbalance with dissipation monitoring and were found to correlate excellently with diffusion coefficients fitted to release measurements at varying pH values. The microcapsules presented in this work allow for an almost instantaneous triggered release even under mild conditions, thanks to the designed core-shell morphology.

3.
J Mater Chem B ; 11(12): 2693-2699, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36807389

RESUMO

Functional textiles is a rapidly growing product segment in which sustained release of actives often plays a key role. Failure to sustain the release results in costs due to premature loss of functionality and resource inefficiency. Conventional application methods such as impregnation lead to an excessive and uncontrolled release, which - for biocidal actives - results in environmental pollution. In this study, microcapsules are presented as a means of extending the release from textile materials. The hydrophobic model substance pyrene is encapsulated in poly(D,L-lactide-co-glycolide) microcapsules which subsequently are loaded into cellulose nonwovens using a solution blowing technique. The release of encapsulated pyrene is compared to that of two conventional functionalization methods: surface and bulk impregnation. The apparent diffusion coefficient is 100 times lower for encapsulated pyrene compared to impregnated pyrene. This clearly demonstrates the rate-limiting barrier properties added by the microcapsules, extending the potential functionality from hours to weeks.


Assuntos
Celulose , Cápsulas , Preparações de Ação Retardada/química , Interações Hidrofóbicas e Hidrofílicas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
4.
J Colloid Interface Sci ; 579: 645-653, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32650196

RESUMO

Triggered release from responsive drug reservoirs activated by remote stimuli is desired in a range of fields. Critical bottlenecks are cost-efficient formulation avenues applicable for industrial scale-up, viable triggers and immediate release rather than continuous release upon activation. UV-sensitive microcapsules based on self-immolating polymers in combination with thin shells and morphological weak spots should allow for immediate triggered release. Polyphthalaldehyde-based microcapsules were prepared using several variations of the internal phase separation route. In addition, a fluorescence microscopy method was developed to study both the microcapsule morphology and the triggered release in-situ. The microcapsule formation was driven by the surface activity of the stabilizer, effectively lowering the high polymer-water interfacial tension, which is in sharp contrast to conventional encapsulation systems. Contrary to previous findings, a core-shell morphology was obtained via slow emulsion-to-suspension transformation. Rapid transformation captured intermediate inverted core-shell structures. The capsules were highly sensitive to both acid- and UV-mediated triggers, leading to an unzipping and rupturing of the shell that released the core content. Poly(methacrylic acid)-stabilized microcapsules displayed immediate UV-triggered release provided by their stimuli-sensitive blueberry morphology. Both capsules in aqueous and dry environment started to lose their core content after less than one minute of UV light exposure.


Assuntos
Polímeros , Raios Ultravioleta , Cápsulas , Emulsões , Água
5.
Soft Matter ; 16(29): 6850-6861, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32638815

RESUMO

A superporous hydrogel - in which the interconnecting fibres themselves are hydrogels - based on hydroxypropyl cellulose (HPC) has been produced using the nonwoven solution blown technique. The nonwoven fibres were subsequently thermally crosslinked with citric acid as identified by esterbond formation using FT-IR spectroscopy. The gel fraction was approximately 70%. The superporous HPC hydrogel exhibited a very fast water absorption, reaching an equilibrium absorption (80% water content) within 30 seconds. The equilibrium absorption was strongly codependent on both the fibre thickness and the pore size whereas the absorption rate was correlated with the pore size as established using standard linearized regression analysis.

6.
Phys Chem Chem Phys ; 22(26): 14579-14590, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597442

RESUMO

The formation of strongly elastic physical gels based on poly(alkylene oxide)-grafted hyaluronan or carboxymethylcellulose, exhibiting both shear-thickening and strain-hardening have been studied using rheometry and explained using a slightly different interpretation of the transient network theory. The graft copolymers were prepared by a quantitative coupling reaction. Their aqueous solutions displayed a thermoreversible continuous transition from Newtonian fluid to viscoelastic solid which could be controlled by the reaction conditions. The evolution of all material properties of the gel could be categorized into two distinct temperature regimes with a fast evolution at low temperatures followed by a slow evolution at high temperatures. The activation energy of the zero shear viscosity and the relaxation time of the graft inside the interconnecting microdomains were almost identical to each other in both temperature regimes. This suggests that the number of microdomains remained approximately constant whereas the aggregation number inside the microdomains increased according to the binodal curve of the thermosensitive graft.


Assuntos
Carboximetilcelulose Sódica/química , Ácido Hialurônico/química , Hidrogéis/química , Polímeros/química , Temperatura Baixa , Temperatura Alta , Transição de Fase , Reologia , Substâncias Viscoelásticas/química , Viscosidade
7.
J Colloid Interface Sci ; 553: 167-176, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202053

RESUMO

The application range of man-made cellulosic fibers is limited by the absence of cost- and manufacturing-efficient strategies for anisotropic hierarchical functionalization. Overcoming these bottlenecks is therefore pivotal in the pursuit of a future bio-based economy. Here, we demonstrate that colloidal silica nanoparticles (NPs), which are cheap, biocompatible and easy to chemically modify, enable the control of the cross-sectional morphology and surface topography of ionic liquid-spun cellulose fibers. These properties are tailored by the silica NPs' surface chemistry and their entry point during the wet-spinning process (dope solution DSiO2 or coagulation bath CSiO2). For CSiO2-modified fibers, the coagulation mitigator dimethylsulphoxide allows for controlling the surface topography and the amalgamation of the silica NPs into the fiber matrix. For dope-modified fibers, we hypothesize that cellulose chains act as seeds for directed silica NP self-assembly. This results for DSiO2 in discrete micron-sized rods, homogeneously distributed throughout the fiber and for glycidoxy-surface modified DSiO2@GLYEO in nano-sized surface aggregates and a cross-sectional core-shell fiber morphology. Furthermore, the dope-modified fibers display outstanding strength and toughness, which are both characteristic features of biological biocomposites.

8.
Biomacromolecules ; 20(3): 1271-1280, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30681838

RESUMO

A series of thermoresponsive graft copolymers, gelling at physiological conditions in aqueous solution and cell growth media, have been synthesized using quantitative coupling between a small set of amino-functionalized poly(alkylene oxide) copolymers (PAO) and the carboxylate of the biologically important polysaccharides (PSa) carboxymethylcellulose and the less reactive hyaluronate. Quantitative grafting enables the establishment of structure-function relationship which is imperative for controlling the properties of in situ gelling hydrogels. The EDC/NHS-mediated reaction was monitored using SEC-MALLS, which revealed that all PAOs were grafted onto the PSa backbone. Aqueous solutions of the graft copolymers were Newtonian fluids at room temperatures and formed reversible physical gels at elevated temperatures which were noncytotoxic toward chondrocytes. The established structure-function relationship was most clearly demonstrated by inspecting the thermogelling strength and the onset of thermogelling in a phase diagram. The onset of the thermogelling function could be controlled by the global PAO concentration, independent of graft ratio.


Assuntos
Carboximetilcelulose Sódica/química , Ácido Hialurônico/química , Polímeros/química , Alcenos/química , Cromatografia em Gel , Óxidos/química , Relação Estrutura-Atividade , Termodinâmica
9.
J Control Release ; 225: 31-9, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26774222

RESUMO

Polymethylmethacrylate-based microcapsules containing the antimicrobial agent 2-n-octyl-4-isothiazolin-3-one (OIT) decorated by an anchored polyelectrolyte brush consisting of an amphiphilic diblock copolymer of polymethylmethacrylate-block-poly(sodium methacrylate) type have been formulated via a coacervation technique. The polyelectrolyte brush surface provided the microcapsule with a high and stable surface charge density. This enabled further surface modification of the colloidal particle with a thin and dense polyelectrolyte multilayer using the layer-by-layer technique. The addition of the highly charged and hydrophilic polyelectrolyte multilayer assembled on the microcapsule surface resulted in a considerable decrease of the release rate of the encapsulated OIT in aqueous suspension, corresponding to a 40 times reduction of the effective OIT diffusion coefficient in the polymethylmethacrylate matrix. Moreover, the release of encapsulated or freely dispersed OIT from coatings as a function of the matrix density was evaluated and analyzed within the framework of applied diffusion models. Encapsulation of OIT in polyelectrolyte multilayer composite microcapsules was found to significantly prolong the release and render the release rate more or less independent of the matrix density. In addition, the long-term antimicrobial properties of the coatings were evaluated in terms of their susceptibility for biofouling using the fungus and common biofouler Aspergillus niger as model organism. The results clearly demonstrated that the use of encapsulated OIT gave a significantly prolonged surface protection and allowed for the determination of the critical surface flux. The polyelectrolyte multilayer has therefore been recognized as the rate-determining barrier for OIT. The matrix density has a minor influence on the release rate of encapsulated OIT from these microcapsules and this concept may very well be expanded to cover a broad range of hydrophobic and semi-hydrophobic biocides.


Assuntos
Desinfetantes/administração & dosagem , Polímeros/administração & dosagem , Tiazóis/administração & dosagem , Aspergillus niger/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Desinfetantes/química , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polímeros/química , Tiazóis/química
10.
Adv Colloid Interface Sci ; 222: 18-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25441449

RESUMO

Biofouling of surfaces is a considerable problem in many industrial sectors and for the public community in general. The problem is usually approached by the use of functional coatings and most of such antifouling coatings rely on the effect of biocides. However, a substantial drawback is the poor control over the release of the biocide as well as its degradation in the paint. Encapsulation of the biocides in microcapsules is a promising approach that may overcome some of the problems associated with the more traditional ways of incorporating the antifouling agent into the formulation. In this review, we summarize more than a decade of microcapsule research from our lab as well as from other groups working on this topic. Focus will be on two coacervation-based encapsulation techniques; the internal phase separation method and the double emulsion method, which together enable the encapsulation of a broad spectrum of biocides with different physicochemical properties. The release of the biocide from core-shell particles and from encapsulated biocides in coatings is treated in detail. The release behaviour is interpreted in terms of the physicochemical properties of the core-shell particle and the coating matrix. In addition, special attention is given to the experimental release methodology and the implementation of proper diffusion models to describe the release. At the end of the review examples of antifouling properties of some coatings against common biofoulers are presented.

11.
Phys Chem Chem Phys ; 15(41): 17727-41, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23999918

RESUMO

Encapsulation of actives in miniature reservoirs, called microcapsules, is used for protection and in particular controlled release of the active. Regarding controlled release applications, the most common function of the microcapsule is to sustain or extend the release of the active. A number of encapsulation methodologies are available including; internal phase separation, interfacial polymerization, formation of multiple emulsions, Layer-by-Layer adsorption of polyelectrolytes and soft templating techniques, all of which are reviewed in this Perspective. The choice of method depends on the nature of the active (hydrophilic/hydrophobic, size, physical state) and on the intended release rate and release profile. Ways to manipulate the release of the active by tailoring the physicochemical properties of the microcapsule are reviewed. Moreover, appropriate diffusion models are introduced to describe the release profile from a variety of microcapsule morphologies, including Fickian diffusion models and Brownian motion, and the meaning and the misuse of the term "zero-order release" are briefly discussed.

12.
J Colloid Interface Sci ; 375(1): 213-5, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22405565

RESUMO

Poly(methyl methacrylate) microcapsules have been prepared using the solvent evaporation technique with poly(methacrylic acid) (PMAA) as dispersant. The charge, swelling and desorption of PMAA from the microcapsules after treating the suspension with base have been followed using microelectrophoresis, X-ray photoelectron spectroscopy and quartz crystal microbalance with dissipation monitoring on model PMMA surfaces. Basic treatment of the microcapsule suspension leads to temporary colloidal stability through the introduction of charges on the PMAA chain. However, the increase in charge causes a continuous desorption of PMAA from the microcapsule surface, eventually leading to aggregation. If instead poly(diallyldimethylammonium chloride) is added to the base treated microcapsule suspension, good colloidal stability is obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...