Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 47(11): 1270-1280, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511257

RESUMO

Endogenous substrates are emerging biomarkers for drug transporters, which serve as surrogate probes in drug-drug interaction (DDI) studies. In this study, the results of metabolome analysis using wild-type and Oct1/2 double knockout mice suggested that N 1-methyladenosine (m1A) was a novel organic cation transporter (OCT) 2 substrate. An in vitro transport study revealed that m1A is a substrate of mouse Oct1, Oct2, Mate1, human OCT1, OCT2, and multidrug and toxin exclusion protein (MATE) 2-K, but not human MATE1. Urinary excretion accounted for 77% of the systemic elimination of m1A in mice. The renal clearance (46.9 ± 4.9 ml/min per kilogram) of exogenously given m1A was decreased to near the glomerular filtration rates by Oct1/2 double knockout or Mate1 inhibition by pyrimethamine (16.6 ± 2.6 and 24.3 ± 0.6 ml/min per kilogram, respectively), accompanied by significantly higher plasma concentrations. In vivo inhibition of OCT2/MATE2-K by a single dose of 7-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-3-carboxylic acid in cynomolgus monkeys resulted in the elevation of the area under the curve of m1A (1.72-fold) as well as metformin (2.18-fold). The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. The renal clearance of m1A in younger (21-45 year old) and older (65-79 year old) volunteers (244 ± 58 and 169 ± 22 ml/min per kilogram, respectively) was about 2-fold higher than the creatinine clearance. The renal clearances of m1A and creatinine were 31% and 17% smaller in older than in younger volunteers. Thus, m1A could be a surrogate probe for the evaluation of DDIs involving OCT2/MATE2-K. SIGNIFICANCE STATEMENT: Endogenous substrates can serve as surrogate probes for clinical drug-drug interaction studies involving drug transporters or enzymes. In this study, m1A was found to be a novel substrate of renal cationic drug transporters OCT2 and MATE2-K. N 1-methyladenosine was revealed to have some advantages compared to other OCT2/MATE substrates (creatinine and N 1-methylnicotinamide). The genetic or chemical impairment of OCT2 or MATE2-K caused a significant increase in the plasma m1A concentration in mice and cynomolgus monkeys due to the high contribution of tubular secretion to the net elimination of m1A. The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. Thus, m1A could be a better biomarker of variations in OCT2/MATE2-K activity caused by inhibitory drugs.


Assuntos
Adenosina/análogos & derivados , Interações Medicamentosas , Rim/metabolismo , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Adenosina/metabolismo , Adulto , Idoso , Animais , Biomarcadores , Creatinina/metabolismo , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade
2.
J Pharm Sci ; 108(8): 2756-2764, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30905707

RESUMO

The present study examined the significance of enterohepatic circulation and the effect of rifampicin [an inhibitor of organic anion-transporting polypeptide 1B (OATP1B)] on the plasma concentrations of bile acid-O-sulfates (glycochenodeoxycholate-O-sulfate, lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate) in monkeys and human liver-transplanted chimeric mice (PXB mouse). Rifampicin significantly increased the area under the curve of bile acid-O-sulfates in monkeys (13-69 times) and PXB mice (13-25 times) without bile flow diversion. Bile flow diversion reduced the concentration of plasma bile acid-O-sulfates under control conditions in monkeys and the concentration of plasma glycochenodeoxycholate-O-sulfate in PXB mice. It also diminished diurnal variation of plasma lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate in PXB mice under control conditions. Bile flow diversion did not affect the plasma concentration of bile acid-O-sulfates in monkeys and PXB mice treated with rifampicin. Plasma coproporphyrin I and III levels were constant in monkeys throughout the study, even with bile flow diversion. This study demonstrated that bile acid-O-sulfates are endogenous OATP1B biomarkers in monkeys and PXB mice. Enterohepatic circulation can affect the baseline levels of plasma bile acid-O-sulfates and modify the effect of OATP1B inhibition.


Assuntos
Ácido Glicocólico/análogos & derivados , Ácido Litocólico/análogos & derivados , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Rifampina/farmacologia , Ácido Taurolitocólico/análogos & derivados , Animais , Ácido Glicocólico/sangue , Humanos , Ácido Litocólico/sangue , Fígado/metabolismo , Transplante de Fígado , Macaca fascicularis , Masculino , Camundongos , Rifampina/administração & dosagem , Ácido Taurolitocólico/sangue
3.
Pharm Res ; 36(4): 55, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30790061

RESUMO

There was a miscalculation of coproporphyrin I AUC0-24h in the published article (Volume 35, Number 7). After the correction of AUC0-24h, AUC ratio and R-square were re-calculated. Then, following corrections were made in the abstract, the body, Fig. 3, Fig. 4 and Table 2 in this article.

4.
Xenobiotica ; 49(8): 961-969, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30124356

RESUMO

A 1,2,4-oxadiazole ring-containing compound DS-8500a was developed as a novel G protein-coupled receptor 119 agonist. In vivo metabolic fates of [14C]DS-8500a differently radiolabeled in the benzene ring or benzamide side carbon in rats were investigated. Differences in mass balances were observed, primarily because after the oxadiazole ring-opening and subsequent ring-cleavage small-molecule metabolites containing the benzene side were excreted in the urine, while those containing the benzamide side were excreted in the bile. DS-8500a was detected at trace levels in urine and bile, demonstrating extensive metabolism prior to urinary/biliary excretion. At least 16 metabolite structures were proposed in plasma, urine, and bile samples from rats treated with [14C]DS-8500a. Formation of a ring-opened metabolite (reduced DS-8500a) in hepatocytes of humans, monkeys, and rats was confirmed; however, it was not affected by typical inhibitors of cytochrome P450s, aldehyde oxidases, or carboxylesterases in human hepatocytes. Extensive formation of the ring-opened metabolite was observed in human liver microsomes fortified with an NADPH-generating system under anaerobic conditions. These results suggest an in vivo unique reductive metabolism of DS-8500a is mediated by human non-cytochrome P450 enzymes.


Assuntos
Benzamidas/metabolismo , Ciclopropanos/metabolismo , Redes e Vias Metabólicas , Oxidiazóis/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Anaerobiose , Animais , Benzamidas/administração & dosagem , Benzamidas/sangue , Benzamidas/farmacocinética , Radioisótopos de Carbono/química , Ciclopropanos/administração & dosagem , Ciclopropanos/sangue , Ciclopropanos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Oxidiazóis/administração & dosagem , Oxidiazóis/sangue , Oxidiazóis/farmacocinética , Oxirredução , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
5.
Xenobiotica ; 49(9): 1086-1096, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30351177

RESUMO

Trastuzumab deruxtecan (DS-8201a) is an antibody-drug conjugate (ADC) composed of a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2) conjugated to a topoisomerase I inhibitor (DXd) at a drug-to-antibody ratio (DAR) of 7-8. Here, we examined the pharmacokinetic (PK) profiles of DS-8201a and DXd in cynomolgus monkeys, a cross-reactive species. Following intravenous (iv) administration of DS-8201a, the linker was stable in plasma, and systemic DXd exposure was low. DXd was rapidly cleared following iv dosing. Biodistribution studies revealed that intact DS-8201a was present mostly in the blood without tissue-specific retention. The major pathway of excretion for DXd was the faecal route following iv administration of radiolabelled DS-8201a. The only detectable metabolite in the urine and faeces was unmetabolized DXd. DXd is a substrate of organic anion transporting polypeptides, P-gp, and breast cancer resistance protein. In conclusion, the stable linker in circulation and the high clearance of DXd upon release resulted in the low systemic exposure to DXd. Furthermore, the minimal tissue-specific retention and rapid excretion of DXd into faeces as its unmetabolized form with potentially limited impact on drug - drug interaction as a victim were also critical elements of the PK profile of DS-8201a.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Camptotecina/análogos & derivados , Imunoconjugados/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ductos Biliares/cirurgia , Células CACO-2 , Camptotecina/farmacocinética , Radioisótopos de Carbono/farmacocinética , Humanos , Inativação Metabólica , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Macaca fascicularis , Masculino , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Distribuição Tecidual , Inibidores da Topoisomerase I/farmacocinética , Trastuzumab
6.
Drug Metab Dispos ; 47(3): 340-349, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30541878

RESUMO

Esaxerenone (CS-3150) is a novel, nonsteroidal, selective mineralocorticoid receptor blocker. The absorption, metabolism, distribution, and excretion of esaxerenone were assessed in in vitro studies and in a clinical study, where [14C]esaxerenone (150 µCi/20 mg) was administered orally to six healthy male subjects. The plasma concentrations of esaxerenone and its metabolites (M4, M11, and M1) were measured using liquid chromatography-tandem mass spectrometry. The recovery of radioactivity was 92.5%, with 38.5% and 54.0% excreted in the urine and feces, respectively. The half-life of radioactivity in blood and plasma was approximately 30 hours, similar to that of the unchanged form in plasma. The blood-to-plasma ratio was 0.628, demonstrating low partitioning to blood components. In plasma, esaxerenone was the most abundant moiety (40.8%), followed by O-glucuronide (21.4%; M4), acyl-glucuronide of amide-bond hydrolysate (8.0%; M11), and the deshydroxyethyl form (1.7%; M1). In vitro studies showed that esaxerenone was a substrate of CYP3A and multiple UDP-glucuronosyltransferase isoforms. Oxidation contributed approximately 30% to its clearance, as indicated by the excretion ratio of oxidized metabolites into urine and feces. Caco-2 studies showed that esaxerenone was a substrate of P-glycoprotein and breast cancer resistance protein; however, the excretion ratios of the unchanged form in the feces and urine were 18.7% and 1.6%, respectively, indicating that these transporters were not important for the absorption and elimination of esaxerenone. Low urinary excretion of esaxerenone suggested that the plasma exposure of esaxerenone was not affected by renal dysfunction. Multiple elimination pathways including oxidation, glucuronidation, and hydrolysis, and the low contribution of transporters, indicated limited drug-drug interaction potential.


Assuntos
Antagonistas de Receptores de Mineralocorticoides/farmacocinética , Pirróis/farmacocinética , Receptores de Mineralocorticoides/metabolismo , Sulfonas/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Adulto , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferase/metabolismo , Voluntários Saudáveis , Humanos , Absorção Intestinal , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Proteínas de Neoplasias/metabolismo , Pirróis/administração & dosagem , Pirróis/metabolismo , Sulfonas/administração & dosagem , Sulfonas/metabolismo , Distribuição Tecidual
7.
Int J Mol Sci ; 19(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867033

RESUMO

Human leukocyte antigen (HLA)-DRB1*01:01 has been shown to be involved in nevirapine-induced hepatic hypersensitivity reactions. In the present study, in silico docking simulations and molecular dynamics simulations were performed to predict the interaction mode of nevirapine with the peptide binding groove of HLA-DRB1*01:01 and its possible effect on the position and orientation of the ligand peptide derived from hemagglutinin (HA). In silico analyses suggested that nevirapine interacts with HLA-DRB1*01:01 around the P4 pocket within the peptide binding groove and the HA peptide stably binds on top of nevirapine at the groove. The analyses also showed that binding of nevirapine at the groove will significantly change the inter-helical distances of the groove. An in vitro competitive assay showed that nevirapine (1000 µM) increases the binding of the HA peptide to HLA-DRB1*01:01 in an allele-specific manner. These results indicate that nevirapine might interact directly with the P4 pocket and modifies its structure, which could change the orientation of loaded peptides and the conformation of HLA-DRB1*01:01; these changes could be distinctively recognized by T-cell receptors. Through this molecular mechanism, nevirapine might stimulate the immune system, resulting in hepatic hypersensitivity reactions.


Assuntos
Cadeias HLA-DRB1/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nevirapina/química , Cadeias HLA-DRB1/efeitos dos fármacos , Cadeias HLA-DRB1/metabolismo , Humanos , Nevirapina/farmacologia , Conformação Proteica
8.
Pharm Res ; 35(7): 138, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748935

RESUMO

PURPOSE: To evaluate association of the dose-dependent effect of rifampicin, an OATP1B inhibitor, on the plasma concentration-time profiles among OATP1B substrates drugs and endogenous substrates. METHODS: Eight healthy volunteers received atorvastatin (1 mg), pitavastatin (0.2 mg), rosuvastatin (0.5 mg), and fluvastatin (2 mg) alone or with rifampicin (300 or 600 mg) in a crossover fashion. The plasma concentrations of these OATP1B probe drugs, total and direct bilirubin, glycochenodeoxycholate-3-sulfate (GCDCA-S), and coproporphyrin I, were determined. RESULTS: The most striking effect of 600 mg rifampicin was on atorvastatin (6.0-times increase) and GCDCA-S (10-times increase). The AUC0-24h of atorvastatin was reasonably correlated with that of pitavastatin (r2 = 0.73) and with the AUC0-4h of fluvastatin (r2 = 0.62) and sufficiently with the AUC0-24h of rosuvastatin (r2 = 0.32). The AUC0-24h of GCDCA-S was reasonably correlated with those of direct bilirubin (r2 = 0.74) and coproporphyrin I (r2 = 0.78), and sufficiently with that of total bilirubin (r2 = 0.30). The AUC0-24h of GCDCA-S, direct bilirubin, and coproporphyrin I were reasonably correlated with that of atorvastatin (r2 = 0.48-0.70) [corrected]. CONCLUSION: These results suggest that direct bilirubin, GCDCA-S, and coproporphyrin I are promising surrogate probes for the quantitative assessment of potential OATP1B-mediated DDI.


Assuntos
Antibióticos Antituberculose/sangue , Antibióticos Antituberculose/farmacologia , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/sangue , Rifampina/sangue , Rifampina/farmacologia , Adulto , Estudos Cross-Over , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Humanos , Masculino , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia , Espectrometria de Massas em Tandem/métodos
9.
Drug Metab Dispos ; 46(5): 667-679, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29358184

RESUMO

To estimate the clinical impact of pharmacokinetic modulation via breast cancer resistance protein (BCRP), in vivo approaches in nonclinical settings are desired in drug development. Clinical observation has identified curcumin as a promising candidate for in vivo selective BCRP inhibition, in addition to several well known inhibitors, such as lapatinib and pantoprazole. This study aimed to confirm the inhibitory efficacy of curcumin on gastrointestinal BCRP function in cynomolgus monkeys and to perform comparisons with lapatinib and pantoprazole. Oral area under the plasma concentration-time curve (AUC) and bioavailability of well known BCRP (sulfasalazine and rosuvastatin), P-glycoprotein (fexofenadine, aliskiren, and talinolol), and CYP3A (midazolam) substrates were investigated in the presence and absence of inhibitors. Oral exposures of sulfasalazine and rosuvastatin were markedly elevated by curcumin with minimal changes in systemic clearance, whereas pharmacokinetic alterations after fexofenadine, aliskiren, and talinolol oral exposure were limited. Curcumin increased oral midazolam exposure without affecting systemic clearance, presumably owing to partial inhibition of intestinal CYP3A. Lapatinib increased the oral AUC for sulfasalazine to a greater extent than curcumin did, whereas pantoprazole had a smaller effect. However, lapatinib also exerted significant effects on fexofenadine, failed to selectively discriminate between BCRP and P-glycoprotein inhibition, and had an effect on oral midazolam exposure comparable with that of curcumin. Thus, pharmacokinetic evaluation in monkeys demonstrated that pretreatment with curcumin as an in vivo selective BCRP inhibitor was more appropriate than pretreatment with lapatinib and pantoprazole for the assessment of the impact of BCRP on gastrointestinal absorption in nonrodent models.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Proteínas de Neoplasias/metabolismo , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Neoplasias da Mama/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Curcumina/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Feminino , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Lapatinib , Macaca fascicularis , Masculino , Midazolam/farmacologia , Pantoprazol , Quinazolinas/farmacologia , Rosuvastatina Cálcica/farmacologia , Sulfassalazina/farmacologia , Terfenadina/análogos & derivados , Terfenadina/farmacologia
10.
Pharm Res ; 34(8): 1601-1614, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28550384

RESUMO

PURPOSE: To assess the use of glycochenodeoxycholate-3-sulfate (GCDCA-S) and chenodeoxycholate 3- or 24-glucuronide (CDCA-3G or -24G) as surrogate endogenous substrates in the investigation of drug interactions involving OATP1B1 and OATP1B3. METHODS: Uptake of GCDCA-S and CDCA-24G was examined in HEK293 cells transfected with cDNA for OATP1B1, OATP1B3, and NTCP and in cryopreserved human hepatocytes. Plasma concentrations of bile acids and their metabolites (GCDCA-S, CDCA-3G, and CDCA-24G) were determined by LC-MS/MS in eight healthy volunteers with or without administration of rifampicin (600 mg, po). RESULTS: GCDCA-S and CDCA-24G were substrates for OATP1B1, OATP1B3, and NTCP. The uptake of [3H]atorvastatin, GCDCA-S, and CDCA-24G by human hepatocytes was significantly inhibited by both rifampicin and pioglitazone, whereas that of taurocholate was inhibited only by pioglitazone. Rifampicin elevated plasma concentrations of GCDCA-S more than those of other bile acids. The area under the plasma concentration-time curve for GCDCA-S was 20.3 times higher in rifampicin-treated samples. CDCA-24G could be detected only in plasma from the rifampicin-treatment phase, and CDCA-3G was undetectable in both phases. CONCLUSIONS: We identified GCDCA-S and CDCA-24G as substrates of NTCP, OATP1B1, and OATP1B3. GCDCA-S is a surrogate endogenous probe for the assessment of drug interactions involving hepatic OATP1B1 and OATP1B3.


Assuntos
Ácido Quenodesoxicólico/metabolismo , Glucuronídeos/metabolismo , Ácido Glicoquenodesoxicólico/análogos & derivados , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Adulto , Atorvastatina/metabolismo , Ácidos e Sais Biliares/sangue , Interações Medicamentosas , Ácido Glicoquenodesoxicólico/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Masculino , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Pioglitazona , Rifampina/farmacologia , Simportadores/metabolismo , Ácido Taurocólico/farmacologia , Tiazolidinedionas/farmacologia , Adulto Jovem
11.
Int J Mol Sci ; 18(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338626

RESUMO

Idiosyncratic ximelagatran-induced hepatotoxicity has been reported to be associated with human leukocyte antigen (HLA)-DRB1*07:01 and ximelagatran has been reported to inhibit the binding of the ligand peptide to HLA-DRB1*07:01 in vitro. In order to predict the possible interaction modes of ximelagatran with HLA-DR molecules, in silico docking simulations were performed. Molecular dynamics (MD) simulations were also performed to predict the effect of ximelagatran on the binding mode of the ligand peptide to HLA-DRB1*07:01. A series of in silico simulations supported the inhibitory effect of ximelagatran on the binding of the ligand peptide to HLA-DRB1*07:01 in vitro. Furthermore, direct interactions of ximelagatran with HLA-DR molecules were evaluated in vitro, which supported the simulated interaction mode of ximelagatran with HLA-DRB1*07:01. These results indicated that ximelagatran directly interacts with the peptide binding groove of HLA-DRB1*07:01 and competes with the ligand peptide for the binding site, which could alter the immune response and lead to the idiosyncratic ximelagatran-induced hepatotoxicity.


Assuntos
Azetidinas/metabolismo , Benzilaminas/metabolismo , Cadeias HLA-DRB1/metabolismo , Azetidinas/química , Benzilaminas/química , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Cadeias HLA-DRB1/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem
12.
J Antibiot (Tokyo) ; 70(1): 84-89, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27328866

RESUMO

In the course of our screening program for inhibitors of lipopolysaccharide binding to cellular receptor CD14, a potent inhibitory activity was detected in the cultured broth of Pseudoalteromonas sp. SANK 71903. Four active compounds, ogipeptins A, B, C and D, were isolated from the cultured broth. The structures of these compounds were elucidated by physicochemical data and spectral analyses, and they were determined to be new cyclic lipopeptides.


Assuntos
Antibacterianos/isolamento & purificação , Lipopeptídeos/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Peptídeos Cíclicos/isolamento & purificação , Antibacterianos/química , Antibacterianos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Análise Espectral
13.
J Antibiot (Tokyo) ; 70(1): 79-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27381520

RESUMO

A library of secondary metabolites from microorganisms was screened to identify novel inhibitors against lipopolysaccharide (LPS), a strong stimulant of innate immunity. Novel cyclic peptides, ogipeptin A, B, C and D, were identified in the culture broth of the marine bacterium Pseudoalteromonas sp. SANK 71903. These compounds blocked LPS binding to the cluster of differentiation 14 (CD14) in vitro with IC50 values of 4.8, 6.0, 4.1 and 5.6 nm, respectively, and attenuated tumor necrosis factor-α secretion from LPS-stimulated macrophage-like cells. These compounds also displayed antimicrobial activity against Escherichia coli with minimum inhibitory concentrations ranging from 0.25 µg ml-1 to 1 µg ml-1. Thus, novel antibiotics that inhibited LPS-induced innate immune reactions were identified in this study.


Assuntos
Antibacterianos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Pseudoalteromonas/metabolismo , Antibacterianos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Concentração Inibidora 50 , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/isolamento & purificação , Metabolismo Secundário , Fator de Necrose Tumoral alfa/metabolismo
14.
Drug Metab Dispos ; 45(3): 336-341, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27974381

RESUMO

A series of fluoroquinolone antibacterial compounds were found to be irreversible (compounds 1-5) and quasi-irreversible (compounds 6-9) inhibitors of CYP3A4. The purpose of this study was to evaluate their mechanism-based inhibition (MBI) potency against CYP3A5. Compounds 1-5 were also irreversible inhibitors of CYP3A5, whereas compounds 6-9 showed neither irreversible nor quasi-irreversible inhibition of CYP3A5. Compounds 6 and 8 did not form a metabolite-intermediate complex with the heme of CYP3A5 during incubation. The structural analysis of the metabolites after incubation of compounds 1 and 6 with CYP3A5 revealed that their metabolites were identical to those produced by CYP3A4, including the precursors of which are speculated to account for the MBI of CYP3A4. The homology modeling of CYP3A5 suggests that four residues around the nitroso intermediate of compound 6 in the substrate-binding pocket of CYP3A4 correspond with the bulkier residues in CYP3A5-especially Phe210 in CYP3A5-which might contribute to the steric hindrance with the nitroso intermediate of compound 6. The substrate-binding pocket structure of CYP3A5 might prevent the nitroso intermediate from coordinate binding with the heme, thereby preventing quasi-irreversible inhibition. Our study may provide new insights into the observable differences between the inhibition of CYP3A4 and CYP3A5.


Assuntos
Antibacterianos/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Fluoroquinolonas/farmacologia , Modelos Moleculares , Antibacterianos/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/metabolismo , Fluoroquinolonas/metabolismo , Humanos , Proteínas Recombinantes , Homologia Estrutural de Proteína , Especificidade por Substrato
15.
Drug Metab Dispos ; 44(10): 1608-16, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27469000

RESUMO

A series of fluoroquinolone compounds (compounds 1-9), which contain a common quinolone scaffold, inactivated the metabolic activity of CYP3A. The purpose of this study was to identify mechanism-based inhibition (MBI) among these fluoroquinolone compounds by metabolite profiling to elucidate the association of the substructure and MBI potential. Reversibility of MBI after incubation with potassium ferricyanide differed among the test compounds. Representative quasi-irreversible inhibitors form a metabolite-intermediate (MI) complex with the heme of CYP3A4 according to absorption analysis. Metabolite profiling identified the cyclopropane ring-opened metabolites from representative irreversible inhibitors, suggesting irreversible binding of the carbon-centered radical species with CYP3A4. On the other hand, the oxime form of representative quasi-irreversible inhibitors was identified, suggesting generation of a nitroso intermediate that could form the MI complex. Metabolites of compound 10 with a methyl group at the carbon atom at the root of the amine moiety of compound 8 include the oxime form, but compound 10 did not show quasi-irreversible inhibition. The docking study with CYP3A4 suggested that a methyl moiety introduced at the carbon atom at the root of the primary amine disrupts formation of the MI complex between the heme and the nitroso intermediate because of steric hindrance. This study identified substructures of fluoroquinolone compounds associated with the MBI mechanism; introduction of substituted groups inducing steric hindrance with the heme of P450 can prevent formation of an MI complex. Our series of experiments may be broadly applicable to prevention of MBI at the drug discovery stage.


Assuntos
Antibacterianos/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Cromatografia Líquida , Citocromo P-450 CYP3A/metabolismo , Humanos , Espectrofotometria Atômica , Espectrometria de Massas em Tandem
16.
J Antibiot (Tokyo) ; 69(10): 747-753, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26956789

RESUMO

In the course of our screening for activators of hypoxia-inducible factor (HIF), A-503451 A and virantmycin were isolated from the cultured broth of an actinomycete strain, Streptomyces sp. SANK 60101. From the same culture, the non-active homologs A-503451 B and D were also isolated. A-503451 A and virantmycin activated HIF-dependent reporter gene expression with EC50 values of 8 and 17 ng ml-1, respectively. They are highly potent activators of HIF and thus may be therapeutically useful for erythropoiesis and neural cell protection.


Assuntos
Fermentação , Fator 1 Induzível por Hipóxia/agonistas , Quinolinas/química , Streptomyces/metabolismo , Genes Reporter , Células Hep G2 , Humanos , Estrutura Molecular , Streptomyces/genética
17.
J Antibiot (Tokyo) ; 69(10): 754-758, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26956797

RESUMO

In the course of our screening, we discovered a novel compound, A-503451A, as a potent hypoxia-inducible factor (HIF) activator. In human hepatocarcinoma HepG2 cells, A-503451A induced HIF-mediated luciferase reporter gene expression and stabilized HIF-1α protein. A-503451A increased the mRNA expression levels and the protein secretion of HIF-dependent genes, vascular endothelial growth factor and erythropoietin. Addition of excess ferric chloride to the culture medium suppressed the HIF-induction activity of A-503451A. A-503451A did not have iron-chelating activity in vitro, but decreased the intracellular labile iron pool concentration. These data indicate that A-503451A is a unique HIF activator.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Indóis/farmacologia , Quelantes de Ferro/farmacologia , Meios de Cultura/química , Eritropoetina/genética , Eritropoetina/metabolismo , Fermentação , Regulação da Expressão Gênica , Genes Reporter , Células Hep G2 , Humanos , Indóis/química , Quelantes de Ferro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Biochem Biophys Res Commun ; 444(3): 360-4, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24462863

RESUMO

K-Ras is frequently mutated and activated especially in pancreatic cancers. To analyze K-Ras function, we have searched for K-Ras interacting proteins and found IQ motif containing GTPase activating protein 1 (IQGAP1) as a novel K-Ras binding protein. IQGAP1 has been known as a scaffold protein for B-Raf, MEK1/2 and ERK1/2. Here we showed that IQGAP1 selectively formed a complex with K-Ras but not with H-Ras, and recruited B-Raf to K-Ras. We found that IQ motif region of IQGAP1 interacted with K-Ras. Both active and inactive K-Ras interacted with IQGAP1, and effector domain mutants of K-Ras also associated with IQGAP1, indicating that IQGAP1 interacts with K-Ras irrespective of Ras-effectors like B-Raf. We also found that overexpression or knock-down of IQGAP1 affected the interaction between K-Ras and B-Raf, and IQGAP1 overexpression increased ERK1/2 phosphorylation in K-Ras dependent manner in PANC1 cells. Our data suggest that IQGAP1 has a novel mechanism to modulate K-Ras pathway.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Linhagem Celular , Eletroporação , Humanos , Neoplasias Pancreáticas/metabolismo
19.
J Antibiot (Tokyo) ; 67(3): 237-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24281661

RESUMO

Lipopolysaccharide (LPS) is a strong endotoxin and is delivered to the cell surface signaling receptor, Toll-like receptor 4 and MD-2 complex, via soluble cluster of differentiation (CD) 14 or membranous CD14, resulting in the induction of the inflammatory response. To obtain new compounds that block LPS binding to CD14, we designed a high-throughput screening based on time-resolved intermolecular fluorescence resonance energy transfer. This cell-free screening system successfully led to the discovery of novel inhibitors of LPS-CD14 interaction from the library of the secondary metabolites of microorganisms. We identified the novel compounds pedopeptin A, B and C from a culture broth of Pedobacter sp. SANK 72003. Pedopeptins blocked LPS binding to CD14 in vitro with IC50 values of 20, 11 and 47 nM, respectively, and also inhibited LPS binding to the cells expressing CD14, leading to the suppression of cytokine production. Moreover, they showed antimicrobial activities against Escherichia coli with minimum inhibitory concentration ranging from 2 to 4 µg ml(-1).


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Pedobacter/química , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Meios de Cultura , Citocinas/metabolismo , Escherichia coli/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Pedobacter/isolamento & purificação , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Solo , Microbiologia do Solo , Células U937
20.
J Antibiot (Tokyo) ; 67(3): 243-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24301185

RESUMO

In the course of our screening for inhibitors of lipopolysaccharide (LPS) binding to cellular receptor CD14, potent inhibitory activity was detected in the cultured broth of Pedobacter sp. SANK 72003. Three active compounds, pedopeptin A, B and C, were isolated from the broth and their structures were elucidated by physicochemical and spectral data to be new cyclic depsipeptides.


Assuntos
Depsipeptídeos/isolamento & purificação , Pedobacter/química , Peptídeos Cíclicos/isolamento & purificação , Meios de Cultura , Depsipeptídeos/química , Fermentação , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/metabolismo , Peptídeos Cíclicos/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...