Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588804

RESUMO

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Assuntos
Hidrolases de Éster Carboxílico , Quinase 1 do Ponto de Checagem , Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Fosforilação , Luciferases/metabolismo , Luciferases/genética , Ligação Proteica , Células HEK293
2.
J Biochem ; 173(6): 435-445, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-36702627

RESUMO

The abnormal activity of PP2A, a dominant member of type 2A serine/threonine protein phosphatase, has been implicated in the development of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). PP2A is a holoenzyme, and protein methylation of the catalytic subunit, PP2Ac, alters the complex composition. A decrease in PP2Ac methylation levels has been reported in AD and DLB. Aging is the most common risk factor for AD and DLB, but the relationship between aging and PP2A has not been studied in detail. Cynomolgus monkey show increased phosphorylation levels of tau and α-synuclein with aging. In this study, we investigated the alterations in the PP2A activity regulation with aging in monkey brains from 2 to 43 years of age using fractionated proteins. We found that type 2A protein phosphatase activity decreased with aging in cytoplasmic and nuclear-soluble fractions. PP2Ac methylation level was decreased in cytoplasmic and sarkosyl-insoluble fractions. A principal component analysis using PP2Ac, demethylated PP2Ac and PP2A methylesterase PME-1 levels in cytoplasmic and nuclear-soluble fractions as attributes showed that aged monkeys were in the same cluster. Our results show that brain aging in cynomolgus monkeys is closely related to changes in PP2A methylation.


Assuntos
Doença de Alzheimer , Proteína Fosfatase 2 , Animais , Proteína Fosfatase 2/metabolismo , Macaca fascicularis/metabolismo , Projetos Piloto , Metilação , Doença de Alzheimer/metabolismo , Fosforilação , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA