Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2200, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495492

RESUMO

Rawanbuki, a variety of Japanese butterbur (Petasites japonicus subsp. giganteus), grow naturally along the Rawan River, Hokkaido, northern Japan. Most plants reach 2-3 m in height and 10 cm in diameter in 2 months and are much larger than those grown along other rivers. We examined the hypothesis that nutrients exported from upland streams enhance the growth of the Rawanbuki. Nutrient concentrations, including nitrogen, phosphorus, and base cations, in the Rawan River were much higher than those in rivers of adjacent watersheds. High nutrient concentrations and moisture contents were found in soil along the Rawan River and a significant relationship was found between physicochemical soil conditions and aboveground biomass of butterburs. This indicates that extremely large Rawanbuki plants could be caused by these high nutrient concentrations and moisture contents in the soils. A manipulation experiment showed that fertilization simulated the growth environment along the Rawan River and enhanced the stem height and stem diameter of butterburs. This study concluded that the extremely large butterburs are caused by a large amount of nutrients exported from upland areas. These results are the first demonstration of the role of stream water nutrients in enlarging agricultural crops.

2.
PeerJ ; 6: e5391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155348

RESUMO

The discovery of a well-preserved cranial end of a plotopterid scapula from the Early Oligocene Jinnobaru Formation in southwestern Japan has provided a fine example of its bone structure and has enabled the reconstruction of the triosseal canal (canalis triosseus) of the unique extinct penguin-like bird. It is believed that plotopterids performed penguin-like underwater propulsion using wings that were similar to those of penguins. Until this discovery, the lack of well-preserved plotopterid scapulae hindered reconstruction of the canalis triosseus, which is an important structure for the wing-upstroke. We reconstructed a composite model of the canalis triosseus based on the new scapula. The reconstructed size of the canal is as large as that in Emperor Penguins (Aptenodytes forsteri), suggesting that the bird had a large and powerful m. supracoracoideus, which is the essential muscle for the powered upstroke required for wing-propelled diving. Plotopterids likely have had the same functional requirement as penguins, the powerful wing-upstroke in the water. They must have also been capable swimmers. This scapula accounts for the structural difference between plotopterids and penguins in terms of the canalis triosseus. The large canalis triosseus of plotopterids was composed of the elongated acromion of the scapula, while penguins have a long processus acromialis claviculae for the same function.

3.
PeerJ ; 6: e4934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967715

RESUMO

A fossil whale from the Hikatagawa Formation (Middle Miocene, 15.2-11.5 Ma) of Hokkaido, Japan is described as a new genus and species Taikicetus inouei and its phylogenetic position is examined. Consistent with the result of Marx, Lambert & de Muizon (2017), the Cetotheriidae form a clade with the Balaenopteroidea, and "a clade comprising Isanacetus, Parietobalaena and related taxa" is located basal to the Balaenopteroidea + Cetotheriidae clade. Taikicetus inouei is placed in the clade with most of members of "Cetotheres" sensu lato comprising Isanacetus, Parietobalaena and related taxa. Taikicetus inouei can be distinguished from the other members of "Cetotheres" sensu lato in having an anteriorly swollen short zygomatic process, high triangular coronoid process, and angular process, which does not reach as far posterior as the mandibular condyle. Taikicetus inouei is only record of "Cetotheres" sensu lato from Hokkaido, Japan and the northern-most records of "Cetotheres" sensu lato in Japan.

4.
PLoS One ; 8(4): e59146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565143

RESUMO

BACKGROUND: The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern. CONCLUSIONS/SIGNIFICANCE: In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.


Assuntos
Adaptação Fisiológica , Osso e Ossos/anatomia & histologia , Osso e Ossos/citologia , Mamíferos/fisiologia , Animais , Mamíferos/classificação , Paleontologia , Filogenia , Análise de Componente Principal
5.
Mol Biol Evol ; 23(6): 1144-55, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16533822

RESUMO

Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain macroevolution.


Assuntos
Evolução Biológica , Aves/genética , DNA Mitocondrial/genética , Fósseis , Spheniscidae/genética , Animais , Aves/classificação , Genes Mitocondriais , Filogenia , Spheniscidae/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA