Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Sep Sci ; 47(13): e2400318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982556

RESUMO

Monitoring the levels of amino acids (AAs) in biological cell cultures provides key information to understand the regulation of cell growth and metabolism. Saccharomyces cerevisiae can naturally excrete AAs, making accurate detection and determination of amino acid levels within the cultivation medium pivotal for gaining insights into this still poorly known process. Given that most AAs lack ultraviolet (UV) chromophores or fluorophores necessary for UV and fluorescence detection, derivatization is commonly utilized to enhance amino acid detectability via UV absorption. Unfortunately, this can lead to drawbacks such as derivative instability, labor intensiveness, and poor reproducibility. Hence, this study aimed to develop an accurate and stable hydrophilic interaction liquid chromatography-tandem mass spectrometry analytical method for the separation of all 20 AAs within a short 17-min run time. The method provides satisfactory linearity and sensitivity for all analytes. The method has been validated for intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. It has been successfully applied to quantify 20 AAs in samples of yeast cultivation medium. This endeavor seeks to enhance our comprehension of amino acid profiles in the context of cell growth and metabolism within yeast cultivation media.


Assuntos
Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Saccharomyces cerevisiae , Espectrometria de Massas em Tandem , Aminoácidos/metabolismo , Aminoácidos/análise , Espectrometria de Massas em Tandem/métodos , Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos
2.
PLoS Genet ; 20(1): e1011121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227612

RESUMO

Plasma membrane (PM) H+-ATPases of the P-type family are highly conserved in yeast, other fungi, and plants. Their main role is to establish an H+ gradient driving active transport of small ions and metabolites across the PM and providing the main component of the PM potential. Furthermore, in both yeast and plant cells, conditions have been described under which active H+-ATPases promote activation of TORC1, the rapamycin-sensitive kinase complex controlling cell growth. Fungal and plant PM H+-ATPases are self-inhibited by their respective cytosolic carboxyterminal tails unless this domain is phosphorylated at specific residues. In the yeast H+-ATPase Pma1, neutralization of this autoinhibitory domain depends mostly on phosphorylation of the adjacent Ser911 and Thr912 residues, but the kinase(s) and phosphatase(s) controlling this tandem phosphorylation remain unknown. In this study, we show that S911-T912 phosphorylation in Pma1 is mediated by the largely redundant Ptk1 and Ptk2 kinase paralogs. Dephosphorylation of S911-T912, as occurs under glucose starvation, is dependent on the Glc7 PP1 phosphatase. Furthermore, proper S911-T912 phosphorylation in Pma1 is required for optimal TORC1 activation upon H+ influx coupled amino-acid uptake. We finally show that TORC1 controls S911-T912 phosphorylation in a manner suggesting that activated TORC1 promotes feedback inhibition of Pma1. Our results shed important new light on phosphoregulation of the yeast Pma1 H+-ATPase and on its interconnections with TORC1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo
3.
Cell Rep ; 42(12): 113561, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096056

RESUMO

Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.


Assuntos
Ferroptose , Saccharomyces cerevisiae , Peroxidação de Lipídeos , Antioxidantes , Ácidos Graxos Insaturados
4.
Sci Rep ; 13(1): 4986, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973391

RESUMO

Bacterial contaminations in yeast fermentation tanks are a recurring problem for the bioethanol production industry. Lactic acid bacteria (LAB), particularly of the genus Lactobacillus, are the most common contaminants. Their proliferation can reduce fermentation efficiency or even impose premature shutdown for cleaning. We have previously reported that laboratory yeast strains naturally excrete amino acids via transporters of the Drug: H+ Antiporter-1 (DHA1) family. This excretion allows yeast to cross-feed LAB, which are most often unable to grow without an external amino acid supply. Whether industrial yeast strains used in bioethanol production likewise promote LAB proliferation through cross-feeding has not been investigated. In this study, we first show that the yeast strain Ethanol Red used in ethanol production supports growth of Lactobacillus fermentum in an amino-acid-free synthetic medium. This effect was markedly reduced upon homozygous deletion of the QDR3 gene encoding a DHA1-family amino acid exporter. We further show that cultivation of Ethanol Red in a nonsterile sugarcane-molasses-based medium is associated with an increase in lactic acid due to LAB growth. When Ethanol Red lacked the QDR1, QDR2, and QDR3 genes, this lactic acid production was not observed and ethanol production was not significantly reduced. Our results indicate that Ethanol Red cultivated in synthetic or molasses medium sustains LAB proliferation in a manner that depends on its ability to excrete amino acids via Qdr transporters. They further suggest that using mutant industrial yeast derivatives lacking DHA1-family amino acid exporters may be a way to reduce the risk of bacterial contaminations during fermentation.


Assuntos
Lactobacillales , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Homozigoto , Microbiologia Industrial , Deleção de Sequência , Etanol/metabolismo , Fermentação , Ácido Láctico/metabolismo , Aminoácidos/metabolismo
5.
iScience ; 25(5): 104238, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494253

RESUMO

The TORC1 (Target of Rapamycin Complex 1) kinase complex plays a pivotal role in controlling cell growth in probably all eukaryotic species. The signals and mechanisms regulating TORC1 have been intensely studied in mammals but those of fungi and plants are much less known. We have previously reported that the yeast plasma membrane H+-ATPase Pma1 promotes TORC1 activation when stimulated by cytosolic acidification or nutrient-uptake-coupled H+ influx. Furthermore, a homologous plant H+-ATPase can substitute for yeast Pma1 to promote this H+-elicited TORC1 activation. We here report that TORC1 activity in Nicotiana tabacum BY-2 cells is also strongly influenced by the activity of plasma membrane H+-ATPases. In particular, stimulation of H+-ATPases by fusicoccin activates TORC1, and this response is also observed in cells transferred to a nutrient-free and auxin-free medium. Our results suggest that plant H+-ATPases, known to be regulated by practically all factors controlling cell growth, contribute to TOR signaling.

6.
Front Microbiol ; 12: 752742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887841

RESUMO

Microbial species occupying the same ecological niche or codeveloping during a fermentation process can exchange metabolites and mutualistically influence each other's metabolic states. For instance, yeast can excrete amino acids, thereby cross-feeding lactic acid bacteria unable to grow without an external amino acid supply. The yeast membrane transporters involved in amino acid excretion remain poorly known. Using a yeast mutant overproducing and excreting threonine (Thr) and its precursor homoserine (Hom), we show that excretion of both amino acids involves the Aqr1, Qdr2, and Qdr3 proteins of the Drug H+-Antiporter Family (DHA1) family. We further investigated Aqr1 as a representative of these closely related amino acid exporters. In particular, structural modeling and molecular docking coupled to mutagenesis experiments and excretion assays enabled us to identify residues in the Aqr1 substrate-binding pocket that are crucial for Thr and/or Hom export. We then co-cultivated yeast and Lactobacillus fermentum in an amino-acid-free medium and found a yeast mutant lacking Aqr1, Qdr2, and Qdr3 to display a reduced ability to sustain the growth of this lactic acid bacterium, a phenotype not observed with strains lacking only one of these transporters. This study highlights the importance of yeast DHA1 transporters in amino acid excretion and mutualistic interaction with lactic acid bacteria.

7.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638549

RESUMO

Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antifúngicos/farmacologia , Cicloeximida/farmacologia , Endocitose/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos
8.
Sci Rep ; 11(1): 4788, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637787

RESUMO

The Target of Rapamycin Complex 1 (TORC1) involved in coordination of cell growth and metabolism is highly conserved among eukaryotes. Yet the signals and mechanisms controlling its activity differ among taxa, according to their biological specificities. A common feature of fungal and plant cells, distinguishing them from animal cells, is that their plasma membrane contains a highly abundant H+-ATPase which establishes an electrochemical H+ gradient driving active nutrient transport. We have previously reported that in yeast, nutrient-uptake-coupled H+ influx elicits transient TORC1 activation and that the plasma-membrane H+-ATPase Pma1 plays an important role in this activation, involving more than just establishment of the H+ gradient. We show here that the PMA2 H+-ATPase from the plant Nicotiana plumbaginifolia can substitute for Pma1 in yeast, to promote H+-elicited TORC1 activation. This H+-ATPase is highly similar to Pma1 but has a longer carboxy-terminal tail binding 14-3-3 proteins. We report that a C-terminally truncated PMA2, which remains fully active, fails to promote H+-elicited TORC1 activation. Activation is also impaired when binding of PMA2 to 14-3-3 s is hindered. Our results show that at least some plant plasma-membrane H+-ATPases share with yeast Pma1 the ability to promote TORC1 activation in yeast upon H+-coupled nutrient uptake.


Assuntos
Proteínas Fúngicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Leveduras/metabolismo , Ativação Enzimática
9.
PLoS Genet ; 16(8): e1008745, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845888

RESUMO

Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Homeostase , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese
10.
PLoS Genet ; 16(8): e1008966, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776922

RESUMO

The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen.


Assuntos
Arginina/metabolismo , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aminoácidos/genética , Transporte Biológico/genética , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/genética , Vacúolos/metabolismo
11.
Hum Vaccin Immunother ; 16(6): 1327-1337, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31951765

RESUMO

A recombinant respiratory syncytial virus (RSV) fusion glycoprotein candidate vaccine (RSV-PreF) manufactured in Chinese hamster ovary cells was developed for immunization of pregnant women, to protect newborns against RSV disease through trans-placental antibody transfer. Traces of a host-cell protein, hamster neogenin (haNEO1), were identified in purified RSV-PreF antigen material. Given the high amino-acid sequence homology between haNEO1 and human neogenin (huNEO1), there was a risk that potential vaccine-induced anti-neogenin immunity could affect huNEO1 function in mother or fetus. Anti-huNEO1 IgGs were measured by enzyme-linked immunosorbent assay in sera from rabbits and trial participants (Phase 1 and 2 trials enrolling 128 men and 500 non-pregnant women, respectively; NCT01905215/NCT02360475) collected after immunization with RSV-PreF formulations containing different antigen doses with/without aluminum-hydroxide adjuvant. In rabbits, four injections administered at 14-day intervals induced huNEO1-specific IgG responses in an antigen-dose- and adjuvant-dependent manner, which plateaued in the highest-dose groups after three injections. In humans, no vaccination-induced anti-huNEO1 IgG responses were detected upon a single immunization, as the values in vaccine and control groups fluctuated around pre-vaccination levels up to 90/360 days post-vaccination. A minority of participants had anti-huNEO1 levels ≥ assay cutoff before vaccination, which did not increase post-vaccination. Thus, despite detecting vaccine-induced huNEO1-specific responses in rabbits, we found no evidence that the candidate vaccine had induced anti-huNEO1 immunity in human adults. The antigen purification process was nevertheless optimized, and haNEO1-reduced vaccines were used in a subsequent Phase 2 trial enrolling 400 non-pregnant women (NCT02956837), in which again no vaccine-induced anti-huNEO1 responses were detected.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Adulto , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Recém-Nascido , Proteínas de Membrana , Proteínas do Tecido Nervoso , Placenta , Gravidez , Coelhos , Receptores de Superfície Celular , Proteínas Virais de Fusão
12.
Sci Rep ; 9(1): 16760, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728037

RESUMO

The human L-type amino acid transporter 1 (LAT1), also known as SLC7A5, catalyzes the transport of large neutral amino acids across the plasma membrane. As the main transporter of several essential amino acids, notably leucine, LAT1 plays an important role in mTORC1 activation. Furthermore, it is overexpressed in various types of cancer cells, where it contributes importantly to sustained growth. Despite the importance of LAT1 in normal and tumor cells, little is known about the mechanisms that might control its activity, for example by promoting its downregulation via endocytosis. Here we report that in HeLa cells, activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) triggers efficient endocytosis and degradation of LAT1. Under these conditions we found LAT1 downregulation to correlate with increased LAT1 ubiquitylation. This modification was considerably reduced in cells depleted of the Nedd4-2 ubiquitin ligase. By systematically mutagenizing the residues of the LAT1 cytosolic tails, we identified a group of three close lysines (K19, K25, K30) in the N-terminal tail that are important for PMA-induced ubiquitylation and downregulation. Our study thus unravels a mechanism of induced endocytosis of LAT1 elicited by Nedd4-2-mediated ubiquitylation of the transporter's N-terminal tail.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Mutação , Ubiquitina-Proteína Ligases Nedd4/genética , Acetato de Tetradecanoilforbol/efeitos adversos , Sítios de Ligação , Regulação para Baixo , Endocitose/efeitos dos fármacos , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Ubiquitinação
13.
Methods Mol Biol ; 2049: 247-261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602616

RESUMO

The yeast proteome includes about 300 polytopic membrane proteins known or predicted to function as transporters. Such proteins ensure active or passive transport of small ions or metabolites across the plasma or internal membranes. Despite decades of research on yeast transporters, many of these remain uncharacterized in terms of substrate selectivity range, subcellular localization, and biological function. Assaying the uptake of radiolabeled compounds into whole cells or isolated organelles remains a powerful method for characterizing the function and biochemical properties of these proteins. Here we describe established protocols for measuring transporter activity in whole cells, intact vacuoles, or reconstituted vacuolar vesicles. These methods have proved particularly useful in the context of our work on yeast amino acid transporters, and can in principle be applied to assaying the uptake of other categories of compounds.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Transporte Biológico
14.
FEMS Microbiol Rev ; 43(6): 642-673, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504467

RESUMO

The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.


Assuntos
Compartimento Celular , Membrana Celular/química , Proteínas Fúngicas/química , Fungos/citologia , Proteínas de Membrana/química , Transporte Biológico , Parede Celular/química , Fungos/química , Homeostase , Saccharomyces cerevisiae
15.
Int J Mol Sci ; 19(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659503

RESUMO

The year 2016 marked the 20th anniversary of the death of Marcelle Grenson and the 50th anniversary of her first publication on yeast amino acid transport, the topic to which, as Professor at the Free University of Brussels (ULB), she devoted the major part of her scientific career. M. Grenson was the first scientist in Belgium to introduce and apply genetic analysis in yeast to dissect the molecular mechanisms that were underlying complex problems in biology. Today, M. Grenson is recognized for the pioneering character of her work on the diversity and regulation of amino acid transporters in yeast. The aim of this tribute is to review the major milestones of her forty years of scientific research that were conducted between 1950 and 1990.


Assuntos
Bioquímica/história , Sistemas de Transporte de Aminoácidos , Aminoácidos/metabolismo , Transporte Biológico , História do Século XX , Biossíntese de Proteínas , Saccharomyces cerevisiae
16.
Proc Natl Acad Sci U S A ; 115(14): E3145-E3154, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29559531

RESUMO

The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named "eisosomes" that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Alimentos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Inanição , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Conformação Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esfingolipídeos/metabolismo , Ubiquitinação
17.
Elife ; 72018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570051

RESUMO

The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H+ influx catalyzed by amino-acid/H+ symporters. H+-dependent uptake of other nutrients, ionophore-mediated H+ diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H+ elicited by these processes stimulates the compensating H+-export activity of the plasma membrane H+-ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H+-ATPase, H+ influx or increase fails to activate TORC1. Our results show that H+ influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism.


Assuntos
Aminoácidos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Sci Rep ; 7(1): 13816, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062000

RESUMO

FTY720 is a sphingoid base analog that acts as an anticancer agent in animal models. Its effect on tumor cells stems largely from its ability to trigger endocytosis of several nutrient transporters. The observation that FTY720 similarly stimulates downregulation of amino acid permeases in yeast suggests that the cellular mechanisms it targets, which are still poorly characterized, are evolutionarily conserved. We here report that adding FTY720 to yeast cells results in rapid inhibition of the intrinsic activity of multiple permeases. This effect is associated with inhibition of the TORC1 kinase complex, which in turn promotes ubiquitin-dependent permease endocytosis. Further analysis of the Gap1 permease showed that FTY720 elicits its ubiquitylation via the same factors that promote this modification when TORC1 is inhibited by rapamycin. We also show that FTY720 promotes endocytosis of the LAT1/SLC7A5 amino acid transporter in HeLa cells, this being preceded by loss of its transport activity and by mTORC1 inhibition. Our data suggest that in yeast, TORC1 deactivation resulting from FTY720-mediated inhibition of membrane transport elicits permease endocytosis. The same process seems to occur in human cells even though our data and previous reports suggest that FTY720 promotes transporter endocytosis via an additional mechanism insensitive to rapamycin.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Endocitose/fisiologia , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais , Ubiquitinação
19.
J Mol Biol ; 429(23): 3678-3695, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28965784

RESUMO

Eukaryotic α-arrestins connect environmental or stress signaling pathways to the endocytosis of plasma membrane transporters or receptors. The Saccharomyces cerevisiae lactate transporter Jen1p has been used as a model cargo for elucidating the mechanisms underlying endocytic turnover in response to carbon sources. Here, we discover a novel pathway of Jen1p endocytosis mediated by the α-arrestin Bul1p in response to the presence of cycloheximide or rapamycin, or prolonged growth in lactate. While cycloheximide or rapamycin modify cells pleiotropically, the major effect of prolonged growth in lactate was shown to be external pH alkalinization. Importantly, employment of specific inactive Jen1p versions showed that Bul1p-dependent endocytosis requires lactate transport, according to the signal imposed. Our results support a model where conformational changes of Jen1p, associated with substrate/H+ symport, are critical for the efficiency of Bul1p-dependent Jen1p turnover.


Assuntos
Álcalis/farmacologia , Arrestina/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Simportadores/metabolismo
20.
Mol Biol Cell ; 28(21): 2819-2832, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814503

RESUMO

Substrate-transport-elicited endocytosis is a common control mechanism of membrane transporters avoiding excess uptake of external compounds, though poorly understood at the molecular level. In yeast, endocytosis of transporters is triggered by their ubiquitylation mediated by the Rsp5 ubiquitin-ligase, recruited by α-arrestin-family adaptors. We here report that transport-elicited ubiquitylation of the arginine transporter Can1 is promoted by transition to an inward-facing state. This conformational change unveils a region of the N-terminal cytosolic tail targeted by the Art1 α-arrestin, which is activated via the TORC1 kinase complex upon arginine uptake. Can1 mutants altered in the arginine-binding site or a cytosolic tripeptide sequence permanently expose the α-arrestin-targeted region so that Art1 activation via TORC1 is sufficient to trigger their endocytosis. We also provide evidence that substrate-transport elicited endocytosis of other amino acid permeases similarly involves unmasking of a cytosolic Art1-target region coupled to activation of Art1 via TORC1. Our results unravel a mechanism likely involved in regulation of many other transporters by their own substrates. They also support the emerging view that transporter ubiquitylation relies on combinatorial interaction rules such that α-arrestins, stimulated via signaling cascades or in their basal state, recognize transporter regions permanently facing the cytosol or unveiled during transport.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arrestina/genética , Arrestina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Citosol/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA