Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1353057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495651

RESUMO

Introduction: The global evolution of resistance to Artemisinin-based Combination Therapies (ACTs) by malaria parasites, will severely undermine our ability to control this devastating disease. Methods: Here, we have used whole genome sequencing to characterize the genetic variation in the experimentally evolved Plasmodium chabaudi parasite clone AS-ATNMF1, which is resistant to artesunate + mefloquine. Results and discussion: Five novel single nucleotide polymorphisms (SNPs) were identified, one of which was a previously undescribed E738K mutation in a 26S proteasome subunit that was selected for under artesunate pressure (in AS-ATN) and retained in AS-ATNMF1. The wild type and mutated three-dimensional (3D) structure models and molecular dynamics simulations of the P. falciparum 26S proteasome subunit Rpn2 suggested that the E738K mutation could change the toroidal proteasome/cyclosome domain organization and change the recognition of ubiquitinated proteins. The mutation in the 26S proteasome subunit may therefore contribute to altering oxidation-dependent ubiquitination of the MDR-1 and/or K13 proteins and/or other targets, resulting in changes in protein turnover. In light of the alarming increase in resistance to artemisin derivatives and ACT partner drugs in natural parasite populations, our results shed new light on the biology of resistance and provide information on novel molecular markers of resistance that may be tested (and potentially validated) in the field.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Mefloquina , Antimaláricos/farmacologia , Parasitos/genética , Malária Falciparum/parasitologia , Mutação , Sequenciamento Completo do Genoma , Plasmodium falciparum/genética
2.
ACS Omega ; 9(10): 11418-11430, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496952

RESUMO

The urgent need for effective treatments against emerging viral diseases, driven by drug-resistant strains and new viral variants, remains critical. We focus on inhibiting the human dihydroorotate dehydrogenase (HsDHODH), one of the main enzymes responsible for pyrimidine nucleotide synthesis. This strategy could impede viral replication without provoking resistance. We evaluated naphthoquinone fragments, discovering potent HsDHODH inhibition with IC50 ranging from 48 to 684 nM, and promising in vitro anti-SARS-CoV-2 activity with EC50 ranging from 1.2 to 2.3 µM. These compounds exhibited low toxicity, indicating potential for further development. Additionally, we employed computational tools such as molecular docking and quantitative structure-activity relationship (QSAR) models to analyze protein-ligand interactions, revealing that these naphthoquinones exhibit a protein binding pattern similar to brequinar, a potent HsDHODH inhibitor. These findings represent a significant step forward in the search for effective antiviral treatments and have great potential to impact the development of new broad-spectrum antiviral drugs.

3.
Sci Rep ; 14(1): 1582, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238498

RESUMO

Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.


Assuntos
Complexos Multienzimáticos , NADH NADPH Oxirredutases , Esquistossomose mansoni , Esquistossomose , Animais , Criança , Humanos , Schistosoma mansoni , Cristalografia por Raios X , NADP/metabolismo , Esquistossomose/tratamento farmacológico , Sítios de Ligação , Esquistossomose mansoni/parasitologia
4.
Future Med Chem ; 15(22): 2033-2050, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937522

RESUMO

Background: The impact of schistosomiasis, which affects over 230 million people, emphasizes the urgency of developing new antischistosomal drugs. Artificial intelligence is vital in accelerating the drug discovery process. Methodology & results: We developed classification and regression machine learning models to predict the schistosomicidal activity of compounds not experimentally tested. The prioritized compounds were tested on schistosomula and adult stages of Schistosoma mansoni. Four compounds demonstrated significant activity against schistosomula, with 50% effective concentration values ranging from 9.8 to 32.5 µM, while exhibiting no toxicity in animal and human cell lines. Conclusion: These findings represent a significant step forward in the discovery of antischistosomal drugs. Further optimization of these active compounds can pave the way for their progression into preclinical studies.


Assuntos
Esquistossomose , Esquistossomicidas , Animais , Humanos , Schistosoma mansoni , Inteligência Artificial , Esquistossomicidas/farmacologia , Esquistossomose/tratamento farmacológico , Descoberta de Drogas
5.
ACS Omega ; 8(37): 34084-34090, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744849

RESUMO

In tropical and subtropical areas, malaria stands as a profound public health challenge, causing an estimated 247 million cases worldwide annually. Given the absence of a viable vaccine, the timely and effective treatment of malaria remains a critical priority. However, the growing resistance of parasites to currently utilized drugs underscores the critical need for the identification of new antimalarial therapies. Here, we aimed to identify potential new drug candidates against Plasmodium falciparum, the main causative agent of malaria, by analyzing the transcriptomes of different life stages of the parasite and identifying highly expressed genes. We searched for genes that were expressed in all stages of the parasite's life cycle, including the asexual blood stage, gametocyte stage, liver stage, and sexual stages in the insect vector, using transcriptomics data from publicly available databases. From this analysis, we found 674 overlapping genes, including 409 essential ones. By searching through drug target databases, we discovered 70 potential drug targets and 75 associated bioactive compounds. We sought to expand this analysis to similar compounds to known drugs. So, we found a list of 1557 similar compounds, which we predicted as actives and inactives using previously developed machine learning models against five life stages of Plasmodium spp. From this analysis, two compounds were selected, and the reactions were experimentally evaluated. The compounds HSP-990 and silvestrol aglycone showed potent inhibitory activity at nanomolar concentrations against the P. falciparum 3D7 strain asexual blood stage. Moreover, silvestrol aglycone exhibited low cytotoxicity in mammalian cells, transmission-blocking potential, and inhibitory activity comparable to those of established antimalarials. These findings warrant further investigation of silvestrol aglycone as a potential dual-acting antimalarial and transmission-blocking candidate for malaria control.

6.
Future Med Chem ; 15(17): 1553-1567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37727967

RESUMO

Aims: The development of safe and effective therapies for treating paracoccidioidomycosis using computational strategies were employed to discover anti-Paracoccidioides compounds. Materials & methods: We 1) collected, curated and integrated the largest library of compounds tested against Paracoccidioides spp.; 2) employed a similarity search to virtually screen the ChemBridge database and select nine compounds for experimental evaluation; 3) performed an experimental evaluation to determine the minimum inhibitory concentration and minimum fungicidal concentration as well as cytotoxicity; and 4) employed computational tools to identify potential targets for the most active compounds. Seven compounds presented activity against Paracoccidioides spp. Conclusion: These compounds are new hits with a predicted mechanisms of action, making them potentially attractive to develop new compounds.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Quimioinformática , Paracoccidioidomicose/tratamento farmacológico , Testes de Sensibilidade Microbiana
7.
Mem Inst Oswaldo Cruz ; 118: e230031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672425

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE: In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS: Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS: Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 µM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 µM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION: Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.


Assuntos
Inibidores de Proteases , Schistosoma mansoni , Feminino , Animais , Inibidores de Proteases/farmacologia , Mamíferos
8.
Future Med Chem ; 15(16): 1449-1467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701989

RESUMO

Background: Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Methodology & results: Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Trypanosoma cruzi) were created. These models successfully discovered four new experimental hits (LC-3, LC-4, LC-6 and LC-15). Among them, LC-6 showed promising results, with IC50 values ranging 0.01-0.072 µM and selectivity indices >10,000. Conclusion: These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico
9.
Comput Struct Biotechnol J ; 21: 2579-2590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122631

RESUMO

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor heavily investigated in infectious and non-infectious diseases. Because of its role in amplifying inflammation, TREM-1 has been explored as a diagnostic/prognostic biomarker. Further, as the receptor has been implicated in the pathophysiology of several diseases, therapies aiming at modulating its activity represent a promising strategy to constrain uncontrolled inflammatory or infectious diseases. Despite this, several aspects concerning its interaction with ligands and activation process, remain unclear. Although many molecules have been suggested as TREM-1 ligands, only five have been confirmed to interact with the receptor: actin, eCIRP, HMGB1, Hsp70 and PGLYRP1. However, the domains involved in the interaction between the receptor and these proteins are not clarified yet. Therefore, here we used in silico approaches to investigate the putative binding domains in the receptor, using hot spots analysis, molecular docking and molecular dynamics simulations between TREM-1 and its five known ligands. Our results indicated the complementarity-determining regions (CDRs) of the receptor as the main mediators of antigen recognition, especially the CDR3 loop. We believe that our study could be used as structural basis for the elucidation of TREM-1's recognition process, and may be useful for prospective in silico and biological investigations exploring the receptor in different contexts.

10.
Mem. Inst. Oswaldo Cruz ; 118: e230031, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1506732

RESUMO

BACKGROUND Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 μM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 μM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.

11.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36558945

RESUMO

Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.

13.
J Chem Inf Model ; 62(24): 6825-6843, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239304

RESUMO

The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 µM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 µM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 µM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 µM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.


Assuntos
Antivirais , Inibidores de Proteases , Zika virus , Humanos , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Zika virus/efeitos dos fármacos , Zika virus/enzimologia , Infecção por Zika virus/tratamento farmacológico
14.
ACS Omega ; 7(32): 27950-27958, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35983371

RESUMO

Finding antivirals for SARS-CoV-2 is still a major challenge, and many computational and experimental approaches have been employed to find a solution to this problem. While the global vaccination campaigns are the primary driver of controlling the current pandemic, orally bioavailable small-molecule drugs and biologics are critical to overcome this global issue. Improved therapeutics and prophylactics are required to treat people with circulating and emerging new variants, addressing severe infection, and people with underlying or immunocompromised conditions. The SARS-CoV-2 envelope spike is a challenging target for viral entry inhibitors. Pindolol presented a good docking score in a previous virtual screening using computational docking calculations after screening a Food and Drug Administration (FDA)-approved drug library of 2400 molecules as potential candidates to block the SARS-CoV-2 spike protein interaction with the angiotensin-converting enzyme 2 (ACE-2). Here, we expanded the computational evaluation to identify five beta-blockers against SARS-CoV-2 using several techniques, such as microscale thermophoresis, NanoDSF, and in vitro assays in different cell lines. These data identified carvedilol with a K d of 364 ± 22 nM for the SARS-CoV-2 spike and in vitro activity (EC50 of 7.57 µM, CC50 of 18.07 µM) against SARS-CoV-2 in Calu-3 cells. We have shown how we can apply multiple computational and experimental approaches to find molecules that can be further optimized to improve anti-SARS-CoV-2 activity.

15.
Biochimie ; 201: 79-99, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931337

RESUMO

Inflammation and an exacerbated immune response are widely accepted contributing mechanisms to the genesis and progression of major neuropsychiatric disorders. However, despite the impressive advances in understanding the neurobiology of these disorders, there is still no approved drug directly linked to the regulation of inflammation or brain immune responses. Importantly, matrix metalloproteinases (MMPs) comprise a group of structurally related endopeptidases primarily involved in remodeling extracellular matrix (ECM). In the central nervous system (CNS), these proteases control synaptic plasticity and strength, patency of the blood-brain barrier, and glia-neuron interactions through cleaved and non-cleaved mediators. Several pieces of evidence have pointed to a complex scenario of MMPs dysregulation triggered by neuroinflammation. Furthermore, major psychiatric disorders' affective symptoms and neurocognitive abnormalities are related to MMPs-mediated ECM changes and neuroglia activation. In the past decade, research efforts have been directed to broad-spectrum MMPs inhibitors with frustrating clinical results. However, in the light of recent advances in combinatorial chemistry and drug design technologies, specific and CNS-oriented MMPs modulators have been proposed as a new frontier of therapy for regulating ECM properties in the CNS. Therefore, here we aim to discuss the state of the art of MMPs and ECM abnormalities in major neuropsychiatric disorders, namely depression, bipolar disorder, and schizophrenia, the possible neuro-immune interactions involved in this complex scenario of MMPs dysregulation and propose these endopeptidases as promising targets for rational drug design.


Assuntos
Metaloproteinases da Matriz , Sinapses , Desenho de Fármacos , Matriz Extracelular , Humanos , Inflamação , Neuroglia
16.
Comput Struct Biotechnol J ; 20: 3708-3717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891792

RESUMO

Malaria is a tropical disease caused by Plasmodium spp. and transmitted by the bite of infected Anopheles mosquitoes. Protein kinases (PKs) play key roles in the life cycle of the etiological agent of malaria, turning these proteins attractive targets for antimalarial drug discovery campaigns. As part of an effort to understand parasite signaling functions, we report the results of a bioinformatics pipeline analysis of PKs of eight Plasmodium species. To date, no P. malariae and P. ovale kinome assemble has been conducted. We classified, curated and annotated predicted kinases to update P. falciparum, P. vivax, P. yoelii, P. berghei, P. chabaudi, and P. knowlesi kinomes published to date, as well as report for the first time the kinomes of P. malariae and P. ovale. Overall, from 76 to 97 PKs were identified among all Plasmodium spp. kinomes. Most of the kinases were assigned to seven of nine major kinase groups: AGC, CAMK, CMGC, CK1, STE, TKL, OTHER; and the Plasmodium-specific group FIKK. About 30% of kinases have been deeply classified into group, family and subfamily levels and only about 10% remained unclassified. Furthermore, updating and comparing the kinomes of P. vivax and P. falciparum allowed for the prioritization and selection of kinases as potential drug targets that could be explored for discovering new drugs against malaria. This integrated approach resulted in the selection of 37 protein kinases as potential targets and the identification of investigational compounds with moderate in vitro activity against asexual P. falciparum (3D7 and Dd2 strains) stages that could serve as starting points for the search of potent antimalarial leads in the future.

17.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35665831

RESUMO

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Assuntos
Fumarato de Dimetilo , Fármacos Neuroprotetores , Animais , Astrócitos , Depressão , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Microglia , Fator 2 Relacionado a NF-E2 , Receptores Acoplados a Proteínas G , Transdução de Sinais , Fator de Necrose Tumoral alfa
18.
Environ Health Perspect ; 130(2): 27012, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192406

RESUMO

BACKGROUND: Modern chemical toxicology is facing a growing need to Reduce, Refine, and Replace animal tests (Russell 1959) for hazard identification. The most common type of animal assays for acute toxicity assessment of chemicals used as pesticides, pharmaceuticals, or in cosmetic products is known as a "6-pack" battery of tests, including three topical (skin sensitization, skin irritation and corrosion, and eye irritation and corrosion) and three systemic (acute oral toxicity, acute inhalation toxicity, and acute dermal toxicity) end points. METHODS: We compiled, curated, and integrated, to the best of our knowledge, the largest publicly available data sets and developed an ensemble of quantitative structure-activity relationship (QSAR) models for all six end points. All models were validated according to the Organisation for Economic Co-operation and Development (OECD) QSAR principles, using data on compounds not included in the training sets. RESULTS: In addition to high internal accuracy assessed by cross-validation, all models demonstrated an external correct classification rate ranging from 70% to 77%. We established a publicly accessible Systemic and Topical chemical Toxicity (STopTox) web portal (https://stoptox.mml.unc.edu/) integrating all developed models for 6-pack assays. CONCLUSIONS: We developed STopTox, a comprehensive collection of computational models that can be used as an alternative to in vivo 6-pack tests for predicting the toxicity hazard of small organic molecules. Models were established following the best practices for the development and validation of QSAR models. Scientists and regulators can use the STopTox portal to identify putative toxicants or nontoxicants in chemical libraries of interest. https://doi.org/10.1289/EHP9341.


Assuntos
Alternativas aos Testes com Animais , Simulação por Computador , Substâncias Perigosas , Animais , Cosméticos/toxicidade , Substâncias Perigosas/toxicidade , Praguicidas/toxicidade , Preparações Farmacêuticas , Relação Quantitativa Estrutura-Atividade
19.
Biomolecules ; 11(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808643

RESUMO

With about 400,000 annual deaths worldwide, malaria remains a public health burden in tropical and subtropical areas, especially in low-income countries. Selection of drug-resistant Plasmodium strains has driven the need to explore novel antimalarial compounds with diverse modes of action. In this context, biodiversity has been widely exploited as a resourceful channel of biologically active compounds, as exemplified by antimalarial drugs such as quinine and artemisinin, derived from natural products. Thus, combining a natural product library and quantitative structure-activity relationship (QSAR)-based virtual screening, we have prioritized genuine and derivative natural compounds with potential antimalarial activity prior to in vitro testing. Experimental validation against cultured chloroquine-sensitive and multi-drug-resistant P. falciparum strains confirmed the potent and selective activity of two sesquiterpene lactones (LDT-597 and LDT-598) identified in silico. Quantitative structure-property relationship (QSPR) models predicted absorption, distribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK) parameters for the most promising compound, showing that it presents good physiologically based pharmacokinetic properties both in rats and humans. Altogether, the in vitro parasite growth inhibition results obtained from in silico screened compounds encourage the use of virtual screening campaigns for identification of promising natural compound-based antimalarial molecules.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Quinina/farmacologia
20.
ACS Omega ; 6(11): 7454-7468, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778258

RESUMO

Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...