Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Theriogenology ; 224: 19-25, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38718738

RESUMO

The objective of this study was to verify the causes of the lower response of primiparous Bos indicus cows to the ovulation synchronization protocol. Two experiments were performed to evaluate the biochemical profile, oocyte and follicular cell quality (Experiment 1) and pregnancy (Experiment 2). In Experiment 1, suckled primiparous (n = 24) and multiparous cows (n = 24) were submitted to ovum pick up (OPU). On Day 0 (D0), all cows received 2 mg of estradiol benzoate (EB) and an intravaginal progesterone insert (P4). Five days (D5) after the first hormonal administration (EB + P4), all follicles larger than 3 mm were counted on each ovary, and ovum pick-up (OPU) was performed. On day 12 (D12), the intravaginal progesterone insert was removed, and measurement and aspiration of the largest follicle were performed. Blood samples were collected on D5 and D12 to evaluate the concentrations of glucose, cholesterol, NEFA, IGF-1 and insulin. In Experiment 2, suckled primiparous (n = 50) and multiparous (n = 50) cows were subjected to an ovulation synchronization protocol based on E2/P4 (D0: 2 mg EB plus P4 intravaginal insert; D8: 500 µg of cloprostenol, 1 mg cypionate estradiol and 300UI of eCG; D10: artificial insemination). In addition, blood samples were collected on D10 for evaluation of the same hormones and metabolites described in Experiment 1. In all studies, calves remained with the cows during the experimental period. In experiment 1, the number of oocytes grade 1 (P = 0.83), grade 2 (P = 0.23) and grade 3 (P = 0.51), total number of retrieved oocytes (P = 0.14), oocyte quality index (P = 0.93) and total viable oocytes (P = 0.38) did not differ between primiparous and multiparous cows. The number of follicles at the time of follicular aspiration (20.7 ± 1.5 vs. 18.0 ± 1.9; P = 0.05) and the diameter of the largest follicle on D12 (13.5 ± 0.6 vs. 11.4 ± 0.6; P = 0.04) were greater in multiparous cows, and the number of degenerated oocytes was greater in primiparous cows (1.9 ± 0.7 vs. 1.2 ± 0.3; P = 0.05). On D5, the concentrations of IGF-1 (P = 0.47), insulin (P = 0.08), total cholesterol (P = 0.47), NEFA (P = 0.77) and glucose (P = 0.55) in the blood and IGF-1 (P = 0.97) and insulin (P = 0.11) in the follicular fluid did not differ between parity groups. On D12, there was no difference in the concentrations of IGF-1 (P = 0.26), total cholesterol (P = 0.32), NEFAs (P = 0.31) and glucose (P = 0.93) in the blood between primiparous and multiparous cows, however, the serum insulin concentration (P = 0.04) was higher in primiparous cows. There was no correlation between serum and follicular fluid insulin concentrations (r = 0.17; P = 0.31), however, there was a low correlation between serum and follicular fluid IGF-1 concentrations (r = 0.47; P = 0.002). Quantification of transcripts did not differ between parity groups. In experiment 2, concentrations of NEFA (P = 0.12) and insulin (P = 0.16) in the blood and P/AI (P = 0.93) did not differ between parity [60 % (30/50) primiparous vs. 60 % (30/50) multiparous]. In contrast, blood concentrations of IGF-1 (P = 0.0001), total cholesterol (P = 0.005) and glucose (P = 0.01) were greater in primiparous cows. It was concluded that the oocyte quality and expression of the genes evaluated in the granulosa cells were not different between primiparous and multiparous cows. Unexpectedly, the pregnancy rate did not differ between parity. Nevertheless, the blood concentrations of IGF-1, total cholesterol and glucose were greater in primiparous cows.

2.
Anim Reprod ; 20(2): e20230069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720726

RESUMO

Advancements in assisted reproduction (AR) methodologies have allowed significant improvements in live birth rates of women who otherwise would not be able to conceive. One of the tools that allowed this improvement is the possibility of embryo selection based on genetic status, performed via preimplantation genetic testing (PGT). Even though the widespread use of PGT from TE biopsy helped to decrease the interval from the beginning of the AR intervention to pregnancy, especially in older patients, in AR, there are still many concerns about the application of this invasive methodology in all cycles. Therefore, recently, researchers started to study the use of cell free DNA (cfDNA) released by the blastocyst in its culture medium to perform PGT, in a method called non-invasive PGT (niPGT). The development of a niPGT would bring the diagnostics power of conventional PGT, but with the advantage of being potentially less harmful to the embryo. Its implementation in clinical practice, however, is under heavy discussion since there are many unknowns about the technique, such as the origin of the cfDNA or if this genetic material is a true representative of the actual ploidy status of the embryo. Available data indicates that there is high correspondence between results observed in TE biopsies and the ones observed from cfDNA, but these results are still contradictory and highly debatable. In the present review, the advantages and disadvantages of niPGT are presented and discussed in relation to tradition TE biopsy-based PGT. Furthermore, there are also presented some other possible non-invasive tools that could be applied in the selection of the best embryo, such as quantification of other molecules as quality biomarkers, or the use artificial intelligence (AI) to identify the best embryos based on morphological and/or morphokitetic parameters.

3.
Theriogenology ; 174: 1-8, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403846

RESUMO

Cell communication within the ovarian follicle is crucial during folliculogenesis to assure an ideal environment for the oocyte to achieve full developmental competence. Intercellular communication is facilitated by the presence of follicular fluid, which mediates the transfer of signaling molecules. Recently, extracellular vesicles (exosomes and microvesicles) containing mRNAs, miRNAs and proteins were described in mammalian follicular fluid. Besides these molecules, extracellular vesicles (EVs) can mediate the transfer of lipids that can act as signal transducers activating second messengers and modulating intracellular pathways. Our goal was to determine the lipid profile of exosomes (small extracellular vesicles) and microvesicles (large extracellular vesicles) from bovine ovarian follicles containing oocytes with different developmental capabilities to verify potential relationships to competence. Using mass spectrometry, we examined the lipid content of EVs present in the follicular fluid of follicles enclosing oocytes that were either unable to cleave (NCLEAVE), arrested at cleavage stage (CLEAVE), or developed to the blastocyst stage (BLAST) after parthenogenetic activation. Although most of the 514 lipids identified in the follicular fluid EVs were common among all groups, 10 exosome-derived lipids and 15 microvesicle-derived lipids were present exclusively in the BLAST group, suggesting a potential relationship with developmental competence. Therefore, our data indicate that the EVs present in follicular fluid of antral follicles of similar morphology contain lipids that may be used as biomarkers associated with the developmental capability of the oocyte to develop to the blastocyst stage.


Assuntos
Vesículas Extracelulares , Oogênese , Animais , Bovinos , Comunicação Celular , Feminino , Líquido Folicular , Lipídeos , Oócitos
4.
Front Vet Sci ; 8: 639752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748215

RESUMO

Early embryonic development occurs in the oviduct, where an ideal microenvironment is provided by the epithelial cells and by the oviductal fluid produced by these cells. The oviductal fluid contains small extracellular vesicles (sEVs), which through their contents, including microRNAs (miRNAs), can ensure proper cell communication between the mother and the embryo. However, little is known about the modulation of miRNAs within oviductal epithelial cells (OECs) and sEVs from the oviductal fluid in pregnant cows. In this study, we evaluate the miRNAs profile in sEVs from the oviductal flushing (OF-sEVs) and OECs from pregnant cows compared to non-pregnant, at 120 h after ovulation induction. In OF-sEVs, eight miRNAs (bta-miR-126-5p, bta-miR-129, bta-miR-140, bta-miR-188, bta-miR-219, bta-miR-345-3p, bta-miR-4523, and bta-miR-760-3p) were up-regulated in pregnant and one miRNA (bta-miR-331-5p) was up-regulated in non-pregnant cows. In OECs, six miRNAs (bta-miR-133b, bta-miR-205, bta-miR-584, bta-miR-551a, bta-miR-1193, and bta-miR-1225-3p) were up-regulated in non-pregnant and none was up-regulated in pregnant cows. Our results suggest that embryonic maternal communication mediated by sEVs initiates in the oviduct, and the passage of gametes and the embryo presence modulate miRNAs contents of sEVs and OECs. Furthermore, we demonstrated the transcriptional levels modulation of selected genes in OECs in pregnant cows. Therefore, the embryonic-maternal crosstalk potentially begins during early embryonic development in the oviduct through the modulation of miRNAs in OECs and sEVs in pregnant cows.

5.
Theriogenology ; 161: 26-40, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33278692

RESUMO

Scrotal heat stress affects spermatogenesis and impairs male fertility by increasing sperm morphological abnormalities, oxidative stress and DNA fragmentation. While sperm morpho-functional changes triggered by scrotal heat stress are well described, sperm molecular alterations remain unknown. Recently, spermatozoa were described as accumulating miRNAs during the last steps of spermatogenesis and through epididymis transit, mainly by communication with small extracellular vesicles (sEVs). Herein, the aim was to investigate the impact of scrotal heat stress in miRNAs profile of sperm, as well as, seminal plasma sEVs. Six Nelore bulls (Bos indicus) were divided into two groups: Control (CON; n = 3) and Scrotal Heat Stress (SHS; n = 3; scrotal heat stressed during 96 h by scrotal bags). The day that the scrotal bags were removed from SHS group was considered as D0 (Day zero). Seminal plasma sEVs were isolated from semen samples collected seven days after heat stress (D+7) to evaluate sEVs diameter, concentration, and 380 miRNA levels. Sperm morpho-functional features and profile of 380 miRNAs were evaluated from semen collected 21 days after heat stress (D+21). As a control, sEVs and sperm were analyzed seven days before heat stress (D-7). Only semen parameters that were not significantly different (P > 0.05) among bulls on D-7 were addressed on D+7 and D+21. While no alterations in diameter and concentration were detected in sEVs on D+7 between CON and SHS groups, three sEVs-miRNAs (miR-23b-5p, -489 and -1248) were down-regulated in SHS bulls compared to CON on D+7; other three (miR-126-5p, -656 and -1307) displayed a tendency (0.05 < P < 0.10) to be altered. Sperm oxidative stress was higher, and the level of 21 sperm miRNAs was altered (18 down-, 3 up-regulated) in SHS bulls compared to CON on D+21. Functional analysis indicated that target genes involved in transcription activation, as well as cell proliferation and differentiation were related to the 18 down-regulated sperm miRNAs (miR-9-5p, -15a, -18a, -20b, -30a-5p, -30b-5p, -30d, -30e-5p -34b, -34c, -106b, -126-5p, -146a, -191, -192, -200b, -335 and -449a). Thus, the scrotal heat stress probably impacted testicular and epididymis functions by reducing the levels of a substantial proportion of sEVs and sperm miRNAs. Our findings suggest that miR-126-5p was possibly trafficked between sEVs and sperm and provide new insights on the mechanism by which sperm acquire miRNAs in the last stages of spermatogenesis and sperm maturation in cattle.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Bovinos , Resposta ao Choque Térmico , Masculino , MicroRNAs/genética , Sêmen , Espermatozoides
6.
Anim Reprod ; 16(1): 31-38, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33299476

RESUMO

Intercellular communication is an essential mechanism for development and maintenance of multicellular organisms. Extracellular vesicles (EVs) were recently described as new players in the intercellular communication. EVs are double-membrane vesicles secreted by cells and are classified according to their biosynthesis, protein markers and morphology. These extracellular vesicles contain bioactive materials such as miRNA, mRNA, protein and lipids. These characteristics permit their involvement in different biological processes. Reproductive physiology is complex and involves constant communication between cells. Different laboratories have described the presence of EVs secreted by ovarian follicular cells, oviductal cells, in vitro produced embryos and by the endometrium, suggesting that EVs are involved in the development of gametes and embryos, in animals and humans. Therefore, is important to understand physiological mechanisms and contributions of EVs in female reproduction in order to develop new tools to improve in vivo reproductive events and assisted reproductive techniques (ARTs). This review will provide the current knowledge related to EVs in female reproductive tissues and their role in ARTs.

7.
Biol Reprod ; 102(2): 362-375, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504242

RESUMO

Extracellular vesicles (EVs) are nanoparticles secreted by ovarian follicle cells. Extracellular vesicles are an important form of intercellular communication, since they carry bioactive contents, such as microRNAs (miRNAs), mRNAs, and proteins. MicroRNAs are small noncoding RNA capable of modulating mRNA translation. Thus, EVs can play a role in follicle and oocyte development. However, it is not clear if EV contents vary with the estrous cycle stage. The aim of this study was to investigate the bovine miRNA content in EVs obtained from follicles at different estrous cycle stages, which are associated with different progesterone (P4) levels in the follicular fluid (FF). We collected FF from 3 to 6 mm follicles and evaluated the miRNA profile of the EVs and their effects on cumulus-oocyte complexes during in vitro maturation. We observed that EVs from low P4 group have a higher abundance of miRNAs predicted to modulate pathways, such as MAPK, RNA transport, Hippo, Cell cycle, FoxO, oocyte meiosis, and TGF-beta. Additionally, EVs were taken up by cumulus cells and, thus, affected the RNA global profile 9 h after EV supplementation. Cumulus cells supplemented with EVs from low P4 presented upregulated genes that could modulate biological processes, such as oocyte development, immune responses, and Notch signaling compared with genes of cumulus cells in the EV free media or with EVs from high P4 follicles. In conclusion, our results demonstrate that EV miRNA contents are distinct in follicles exposed to different estrous cycle stage. Supplementation with EVs impacts gene expression and biological processes in cumulus cells.


Assuntos
Células do Cúmulo/metabolismo , Ciclo Estral/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Oócitos/metabolismo , Animais , Bovinos , Ciclo Celular/fisiologia , Ciclo Estral/genética , Feminino , Líquido Folicular/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Meiose/fisiologia , MicroRNAs/genética , Folículo Ovariano/metabolismo
8.
Mol Reprod Dev ; 86(8): 1067-1080, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31192511

RESUMO

The biotechnology for in vitro embryo production is becoming increasingly popular, being applied to humans and domestic animals. Embryo development can be achieved with either 20% or 5% oxygen tension. The extracellular vesicles (EVs) are secreted by different cell types and carry bioactive materials. Our objective was to determine the secretion pattern and micro RNA (miRNA) contents of EVs released in the bovine embryo culture environment-embryo and cumulus cell monolayer-on Days 3 and 7 of in vitro culture under two different oxygen tensions: High (20%) and low (5%). The EVs were isolated from the medium and analyzed to determine size, concentration, and miRNA levels. EVs concentration in low oxygen tension increased on Day 3 and decreased on Day 7. Additionally, altered EV miRNAs derived from the embryo-cumulus culture medium were predicted to regulate survival and proliferation-related pathways on Days 3 and 7. Moreover, miR-210 levels decreased in EVs isolated from the culture medium under high oxygen tension suggesting that this miRNA can be used as a marker for normoxia since it is associated with low oxygen tension. In summary, this study provides knowledge of the oxygen tension effects on EVs release and content, and potentially, on cell-to-cell communication during in vitro bovine embryo production.


Assuntos
Meios de Cultura , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Animais , Bovinos , Embrião de Mamíferos/citologia , Feminino
9.
Anim Reprod ; 16(3): 485-496, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32435292

RESUMO

Follicles are composed of different interdependent cell types including oocytes, cumulus, granulosa, and theca cells. Follicular cells and oocytes exchange signaling molecules from the beginning of the development of the primordial follicles until the moment of ovulation. The follicular structure transforms during folliculogenesis; barriers form between the germ and the somatic follicular cells, and between the somatic follicular cells. As such, communication systems need to adapt to maintain the exchange of signaling molecules. Two critical barriers are established at different stages of development: the zona pellucida, separating the oocyte and the cumulus cells limiting the communication through specific connections, and the antrum, separating subpopulations of follicular cells. In both situations, communication is maintained either by the development of specialized connections as transzonal projections or by paracrine signaling and trafficking of extracellular vesicles through the follicular fluid. The bidirectional communication between the oocytes and the follicle cells is vital for driving folliculogenesis and oogenesis. These communication systems are associated with essential functions related to follicular development, oocyte competence, and embryonic quality. Here, we discuss the formation of the zona pellucida and antrum during folliculogenesis, and their importance in follicle and oocyte development. Moreover, this review discusses the current knowledge on the cellular mechanisms such as the movement of molecules via transzonal projections, and the exchange of extracellular vesicles by follicular cells to overcome these barriers to support female gamete development. Finally, we highlight the undiscovered aspects related to intrafollicular communication among the germ and somatic cells, and between the somatic follicular cells and give our perspective on manipulating the above-mentioned cellular communication to improve reproductive technologies.

10.
Anim Reprod ; 15(3): 261-270, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34178149

RESUMO

The magnitude of oocyte's role for embryo development is categorical. This unique cell contains the machineries and cellular components necessary to remodel male and female chromatin, to sustain early development and to, ultimately, generate a complete and complex individual. However, to gain these competences before fertilization, the oocyte undergoes several morphological, cellular and molecular changes during its lifetime enclosed in the ovarian follicle. This review will briefly revisit how the oocyte orchestrate the follicular cells, and how molecules transit to the oocyte from the innermost (cumulus) and outermost (antrum and granulosa cells) layers surrounding the follicle-enclosed oocyte. Finally, we will discuss the interferences of in vitro culture conditions in the communication of the oocyte with its surrounding cells and the potential strategies to modulate these communication systems to increase oocyte competence.

11.
PLoS One ; 12(9): e0185045, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922408

RESUMO

The ovarian follicle encloses oocytes in a microenvironment throughout their growth and acquisition of competence. Evidence suggests a dynamic interplay among follicular cells and oocytes, since they are constantly exchanging "messages". We dissected bovine ovarian follicles and recovered follicular cells (FCs-granulosa and cumulus cells) and cumulus-oocyte complexes (COCs) to investigate whether the PI3K-Akt signaling pathway impacted oocyte quality. Following follicle rupture, COCs were individually selected for in vitro cultures to track the follicular cells based on oocyte competence to reach the blastocyst stage after parthenogenetic activation. Levels of PI3K-Akt signaling pathway components in FCs correlated with oocyte competence. This pathway is upregulated in FCs from follicles with high-quality oocytes that are able to reach the blastocyst stage, as indicated by decreased levels of PTEN and increased levels of the PTEN regulators bta-miR-494 and bta-miR-20a. Using PI3K-Akt responsive genes, we showed decreased FOXO3a levels and BAX levels in lower quality groups, indicating changes in cell cycle progression, oxidative response and apoptosis. Based on these results, the measurement of levels of PI3K-Akt pathway components in FCs from ovarian follicles carrying oocytes with distinct developmental competences is a useful tool to identify putative molecular pathways involved in the acquisition of oocyte competence.


Assuntos
Oócitos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Blastocisto/enzimologia , Bovinos , Feminino , Proteína Forkhead Box O3/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Partenogênese , Proteína X Associada a bcl-2/metabolismo
12.
Sci Rep ; 7(1): 2645, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572619

RESUMO

Oocytes that undergo in vitro maturation (IVM) are metabolically abnormal and accumulate excess lipid content. However, the mechanism of lipid accumulation and the role of cumulus cells in this process are unclear. Recently, it was shown that fatty acid binding proteins (FABPs) performed intra- and extracellular fatty acid transport. We postulated that FABP3 might be responsible for fatty acid transport from cumulus cells to the oocytes via transzonal projections (TZPs) during IVM. Transcript and protein levels of FABP3 were analyzed in both in vivo- and in vitro-matured cumulus-oocyte-complexes and were increased in IVM samples. Further analysis showed increased lipid content in oocytes and cumulus cells in IVM samples compared to in vivo-derived. We therefore speculated that altered traffic of fatty acids via FABP3 during IVM was the mechanism leading to the excess of lipids accumulated within IVM oocytes. Furthermore, we demonstrated an increase in FABP3 levels and lipid content during the first 9 h of IVM, further strengthening the possibility of fatty acid transport via FABP3 and TZPs. Additionally, disruptions of TZPs during IVM decreased lipid accumulation in oocytes. Our results shed light on a possible mechanism involving FABP3 and TZPs that causes excess lipid accumulation in oocytes during IVM.


Assuntos
Células do Cúmulo/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Metabolismo dos Lipídeos , Oócitos/metabolismo , Animais , Bovinos , Técnicas In Vitro
13.
Ciênc. rural ; 45(10): 1879-1886, Oct. 2015.
Artigo em Inglês | LILACS | ID: lil-758047

RESUMO

This review aim to present some clinical problems found in IVP-derived animals focusing on NT procedures and to discuss the possible role of epigenetics in such process. Also, as cell-secreted vesicles have been reported as possible regulators of important physiological reproductive processes such as folliculogenesis and fertilization, it is also presented herein a new perspective of manipulating the pre-implantation period trough effector molecules contained in such vesicles.


Nesta revisão, apresentamos alguns problemas clínicos encontrados nos animais derivados de PIV, principalmente derivados de transferência de núcleo, e discutimos o possível papel da epigenética em tais processos. Além disso, uma vez que vesículas secretadas por células têm sido descritas como possíveis reguladores de processos reprodutivos fisiológicos importantes, tais como a foliculogênese e a fertilização, estas são aqui apresentadas como uma possível nova ferramenta para a manipulação do período embrionário pré-implantacional através de moléculas efetoras, contidas em tais vesículas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...