Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237764

RESUMO

Candida auris has been found to be a persistent colonizer of human skin and a successful pathogen capable of causing potentially fatal infection, especially in immunocompromised individuals. This fungal species is usually resistant to most antifungal agents and has the ability to form biofilms on different surfaces, representing a significant therapeutic challenge. Herein, the effect of metabolites of Pseudomonas aeruginosa LV strain, alone and combined with biologically synthesized silver nanoparticles (bioAgNP), was evaluated in planktonic and sessile (biofilm) cells of C. auris. First, the minimal inhibitory and fungicidal concentration values of 3.12 and 6.25 µg/mL, respectively, were determined for F4a, a semi-purified bacterial fraction. Fluopsin C and indolin-3-one seem to be the active components of F4a. Like the semi-purified fraction, they showed a time- and dose-dependent fungicidal activity. F4a and bioAgNP caused severe changes in the morphology and ultrastructure of fungal cells. F4a and indolin-3-one combined with bioAgNP exhibited synergistic fungicidal activity against planktonic cells. F4a, alone or combined with bioAgNP, also caused a significant decrease in the number of viable cells within the biofilms. No cytotoxicity to mammalian cells was detected for bacterial metabolites combined with bioAgNP at synergistic concentrations that presented antifungal activity. These results indicate the potential of F4a combined with bioAgNP as a new strategy for controlling C. auris infections.

2.
Plants (Basel) ; 11(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235464

RESUMO

In the current agronomic context, the adoption of alternative forms of soil management is essential to increase crop yield. Agricultural sustainability requires practices that generate positive impacts and promote an increase in microbiome diversity as a tool to overcome adverse environmental conditions. An important ally is the indigenous arbuscular mycorrhizal fungi (AMF) that can improve plant growth and provide protection against abiotic stress such as metal toxicity. In a greenhouse experiment, this work studied the effect of wheat growth on several parameters of biological activity and functional microbiome in relation to wheat antecedent plant mycotrophy and soil disturbance under Mn stress. When the wheat was planted after highly mycotrophic plants and the soil was not previously disturbed, the results showed a 60% increase in wheat arbuscular colonization and a 2.5-fold increase in dry weight along with higher values of photosynthetic parameters and dehydrogenase activity. Conversely, soil disturbance before wheat planting increased the ß-glucosidase activity and the count of manganese oxidizers, irrespectively of antecedent plant, and decreased drastically the wheat dry weight, the AMF colonization and the chlorophyll content compared to the undisturbed treatment. These findings suggest that not only the wheat growth but also the soil functional microbiome associated is affected by the antecedent type of plant and previous soil disturbance imposed. In addition, the improvement in wheat dry weight despite Mn toxicity may rely on shifts in biological activity associated to a well-established and intact ERM early developed in the soil.

3.
Sci Rep ; 12(1): 15284, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088482

RESUMO

Soybean and maize are some of the main drivers of Brazilian agribusiness. However, biotic and abiotic factors are of great concern, causing huge grain yield and quality losses. Phosphorus (P) deficiency is important among the abiotic factors because most Brazilian soils have a highly P-fixing nature. Thus, large amounts of phosphate fertilizers are regularly applied to overcome the rapid precipitation of P. Searching for alternatives to improve the use of P by crops is essential to reduce the demand for P input. The use of multifunctional rhizobacteria can be considered one of these alternatives. In this sense, the objective of the present work was to select and validate bacterial strains with triple action (plant growth promoter, phosphate solubilizer, and biocontrol agent) in maize and soybean, aiming to develop a multifunctional microbial inoculant for Brazilian agriculture. Bacterial strains with high indole acetic acid (IAA) production, phosphate solubilization, and antifungal activity against soil pathogenic fungi (Rhizoctonia solani, Macrophomina phaseolina, and Fusarium solani) were selected from the maize rhizosphere. Then, they were evaluated as growth promoters in maize under greenhouse conditions. Based on this study, strain 03 (Ag75) was selected due to its high potential for increasing biomass (root and shoot) and shoot P content in maize. This strain was identified through genomic sequencing as Bacillus velezensis. In field experiments, the inoculation of this bacterium increased maize and soybean yields by 17.8 and 26.5%, respectively, compared to the control (25 kg P2O5). In addition, the inoculation results did not differ from the control with 84 kg P2O5, indicating that it is possible to reduce the application of phosphate in these crops. Thus, the Ag75 strain has great potential for developing a multifunctional microbial inoculant that combines the ability to solubilize phosphate, promote plant growth, and be a biocontrol agent for several phytopathogenic fungi.


Assuntos
Inoculantes Agrícolas , Bacillus , Bacillus/genética , Bactérias/genética , Produtos Agrícolas , Fosfatos , Glycine max , Zea mays
4.
Nat Prod Res ; : 1-7, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028332

RESUMO

A previous optimization of supercritical extraction from guarana seeds was performed applying orthogonal array design (OA9(34)). The antioxidant and antimicrobial activities of these extracts, as well as metabolomic profiling and correlations from the compounds by statistical analysis were determined. Extracts 1 (40% ethanol; 20 min; 40 °C and 100 bar), 2 (40% methanol; 60 min; 40 °C and 200 bar), and 8 (40% methanol; 40 min; 60 °C and 100 bar) had the highest combined values of antioxidant capacity for the DPPH, FRAP, ABTS and xanthine oxidase system methods, and were identified by chemometric analysis. Similar chemical profiles of the extracts were obtained by LC-DAD-MS, and were identified: methyl-xanthine, (epi)catechin and dimers and trimers of type A and B proanthocyanidins. The heat map analysis showed positive correlation between antioxidant methods DPPH, FRAP and ABTS and with flavan-3-ols and proanthocyanidins. Extract 3 was active against Gram-negative and -positive bacteria and Candida tropicalis.

5.
Front Microbiol ; 13: 846116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663865

RESUMO

Considering the worrying emergence of multidrug resistance, including in animal husbandry and especially in food-producing animals, the need to detect antimicrobial resistance strains in poultry environments is relevant, mainly considering a One Health approach. Thus, this study aimed to conduct longitudinal monitoring of antimicrobial resistance in broiler chicken farms, with an emphasis on evaluating the frequency of resistance to fosfomycin and ß-lactams. Escherichia coli was isolated from broiler chicken farms (cloacal swabs, meconium, poultry feed, water, poultry litter, and Alphitobius diaperinus) in northern Paraná from 2019 to 2020 during three periods: the first period (1st days of life), the second period (20th to 25th days of life), and third period (40th to 42nd days of life). Antibiogram tests and the detection of phenotypic extended-spectrum ß-lactamase (ESBL) were performed, and they were confirmed by seaching for genes from the bla CTX-M group. The other resistance genes searched were mcr-1 and fosA3. Some ESBL bla CTX-M-1 group strains were selected for ESBL identification by sequencing and enterobacterial repetitive intergenic consensus-polymerase chain reaction analysis. To determine the transferability of the bla CTX-M-1- and fosA3-carrying plasmids, strains were subjected to conjugation experiments. A total of 507 E. coli were analyzed: 360 from cloacal swabs, 24 from meconium samples, 3 from poultry feed samples, 18 from water samples, 69 from poultry litter samples, and 33 from A. diaperinus samples. Among the strain isolate, 80% (406/507) were multidrug-resistant (MDR), and 51% (260/507) were ESBL-positive, with the bla CTX-M-1 group being the most frequent. For the fosA3 gene, 68% (344/507) of the strains isolated were positive, deserves to be highlighted E. coli isolated from day-old chickens (OR 6.34, CI 2.34-17.17), when compared with strains isolated from other origins (poultry litter, A. diaperinus, water, and poultry feed). This work alerts us to the high frequency of the fosA3 gene correlated with the CTX-M-1 group (OR 3.57, CI 95% 2.7-4.72, p < 0.05), especially the bla CTX-M-55 gene, in broiler chickens. This profile was observed mainly in day-old chicken, with a high percentage of E. coli that were MDR. The findings emphasize the importance of conducting longitudinal monitoring to detect the primary risk points during poultry production.

6.
J Sci Food Agric ; 102(3): 1245-1254, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34378222

RESUMO

BACKGROUND: Phytopathogenic microorganisms are the main cause of plant diseases, generating significant economic losses for the agricultural and food supply chain. Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are very perishable plants and highly demanding in the use of pesticides; therefore, alternative solutions such as biosurfactants have aroused as a potent substituent. The main objective of the present study was to investigate the antimicrobial activity of sophorolipids against the phytopathogens Botrytis cinerea, Sclerotium rolfsii, Rhizoctonia solani and Pythium ultimum. RESULTS: The biosurfactant inhibited the mycelial growth in vitro with a minimum concentration of 2 mg mL-1 . The application of sophorolipids at 1, 2 and 4 mg mL-1 in detached leaves of tomato before the inoculation of the fungus B. cinerea was the best treatment, reducing leaf necrosis by up to 76.90%. The use of sophorolipids for washing tomato fruits before the inoculation of B. cinerea was able to inhibit the development of gray mold by up to 96.27%. CONCLUSION: The results for tomato leaves and fruits revealed that the biosurfactant acts more effectively when used preventively. Sophorolipids are stable molecules that show promising action for the potential replacement of pesticides in the field and the post-harvest process against the main tomato phytopathogens. © 2021 Society of Chemical Industry.


Assuntos
Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Ácidos Oleicos/farmacologia , Doenças das Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Saccharomycetales/metabolismo , Solanum lycopersicum/microbiologia , Botrytis/fisiologia , Frutas/microbiologia , Fungicidas Industriais/metabolismo , Ácidos Oleicos/metabolismo , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Rhizoctonia/fisiologia , Saccharomycetales/química
7.
Plants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451540

RESUMO

Asian Soybean Rust (ASR), a disease caused by Phakopsora pachyrhizi, causing yield losses up to 90%. The control is based on the fungicides which may generate resistant fungi. The activation of the plant defense system, should help on ASR control. In this study, secondary metabolites of Pseudomonas aeruginosa LV strain were applied on spore germination and the expression of defense genes in infected soybean plants. The F4A fraction and the pure metabolites were used. In vitro, 10 µg mL-1 of F4A reduced spore germination by 54%, while 100 µg mL-1 completely inhibited. Overexpression of phenylalanine ammonia lyase (PAL), O-methyltransferase (OMT) and pathogenesis related protein-2 (PR-2; glucanases) defense-related genes were detected 24 and 72 h after soybean sprouts were sprayed with an organocopper antimicrobial compound (OAC). Under greenhouse conditions, the best control was observed in plants treated with 60 µg mL-1 of PCA, which reduced ASR severity and lesion frequency by 75% and 43%, respectively. Plants sprayed with 2 and 20 µg mL-1 of F4A also decreased severity (41%) and lesion frequency (32%). The significant reduction in spore germination ASR in plant suggested that the strain of these metabolites are effective against P. pachyrhizi, and they can be used for ASR control.

8.
Front Plant Sci ; 12: 628769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276714

RESUMO

The Tectona grandis L.f. (teak) is an important forest species with high economy value in Asia, Africa, and Latin America. In Latin America, Brazil is one of the countries with the most cultivated areas. The cultivation of teak turns out to be challenging because of its high nutritional demand and the need for seedling production by clonal propagation that includes about 90 days in the nursery phase. The optimization of seedling production is necessary for better results in the nursery and to enhance growth in the field. In this way, the well-known advantage of using microorganisms that promote plant development appears as a potential biotechnological approach to be explored and for the implantation of new areas of wood production. In this study, the inoculation of Bacillus subtilis as plant growth-promoting rhizobacteria (PGPR) was evaluated, and Rhizophagus clarus, an arbuscular mycorrhizal fungus (AMF), and the co-inoculation of these microorganisms in the teak seedling production phase can improve the development of commercial plantations under field conditions. Experiments were carried out under greenhouse and field conditions to evaluate four treatments based on the substrate inoculation of the seedlings. Treatments consisted of a non-inoculated control, PGPR inoculation, AMF inoculation, and PGPR + AMF inoculation. The results of the biometric evaluation of seedlings in the greenhouse showed that there was a significant difference in AMF inoculation and PGPR + AMF inoculation in terms of the specific root length and root density treatments, there was also a positive correlation between these two treatments and the absorption of some nutrients, such as P, N, K, Mg, Cu, Mn, and Zn. This response led to an increase between 4.75 and 11.04% in the field growth rate.

9.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414299

RESUMO

Pseudomonas aeruginosa is known for a high adaptive capacity due to the ability to synthesize several compounds that give advantages for competing with other microorganisms in the environment. The LV strain synthesizes bioactive compounds, mainly by secondary metabolism, with antitumor and antimicrobial activities against microbial pathogens.

11.
Plants (Basel) ; 9(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806693

RESUMO

In this work, the metabolic elicitors extracted from the beneficial rhizobacterium Pseudomonas fluorescens N 21.4 were sequentially fragmented by vacuum liquid chromatography to isolate, purify and identify the compounds responsible for the extraordinary capacities of this strain to induce systemic resistance and to elicit secondary defensive metabolism in diverse plant species. To check if the fractions sequentially obtained were able to increase the synthesis of isoflavones and if, therefore, they still maintained the eliciting capacity of the live strain, rapid and controlled experiments were done with soybean seeds. The optimal action concentration of the fractions was established and all of them elicited isoflavone secondary metabolism-the fractions that had been extracted with n-hexane being more effective. The purest fraction was the one with the highest eliciting capacity and was also tested in Arabidopsis thaliana seedlings to induce systemic resistance against the pathogen Pseudomonas syringae pv. tomato DC 3000. This fraction was then analyzed by UHPLC/ESI-QTOF-MS, and an alkaloid, two amino lipids, three arylalkylamines and a terpenoid were tentatively identified. These identified compounds could be part of commercial plant inoculants of biological and sustainable origin to be applied in crops, due to their potential to enhance the plant immune response and since many of them have putative antibiotic and/or antifungal potential.

12.
Front Microbiol ; 11: 1076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582065

RESUMO

The antibiotic activity of metalloantibiotic compounds has been evaluated since the 90s, and many different modes of action were characterized. In the last decade, the effects of secondary metabolites produced by Pseudomonas aeruginosa LV strain, including a cupric compound identified as Fluopsin C, were tested against many pathogenic bacteria strains, proving their high antibiotic activity. In the present study, the bactericidal mechanisms of action of Fluopsin C and the semi-purified fraction F4A were elucidated. The results found in electron microscopy [scanning electron microscopy (SEM) and transmission electronic microscopy (TEM)] demonstrated that both Fluopsin C and F4A are affecting the cytoplasmatic membrane of Gram-positive and Gram-negative bacteria. These results were confirmed by fluorescence microscopy, where these bacteria presented permeabilization of their cytoplasmatic membranes after contact with the semi-purified fraction and pure compound. Using electronic and fluorescence microscopy, along with bacterial mutant strains with marked divisional septum, the membrane was defined as the primary target of Fluopsin C in the tested bacteria.

13.
Front Microbiol ; 10: 2431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708901

RESUMO

The increasing emergence of multidrug-resistant (MDR) organisms in hospital infections is causing a global public health crisis. The development of drugs with effective antibiotic action against such agents is of the highest priority. In the present study, the action of Fluopsin C against MDR clinical isolates was evaluated under in vitro and in vivo conditions. Fluopsin C was produced in cell suspension culture of Pseudomonas aeruginosa LV strain, purified by liquid adsorption chromatography and identified by mass spectrometric analysis. Bioactivity, bacterial resistance development risk against clinically important pathogenic strains and toxicity in mammalian cell were initially determined by in vitro models. In vivo toxicity was evaluated in Tenebrio molitor larvae and mice. The therapeutic efficacy of intravenous Fluopsin C administration was evaluated in a murine model of Klebsiella pneumoniae (KPC) acute sepsis, using six different treatments. The in vitro results indicated MIC and MBC below 2 µg/mL and low bacterial resistance development frequency. Electron microscopy showed that Fluopsin C may have altered the exopolysaccharide matrix and caused disruption of the cell wall of MDR bacteria. Best therapeutic results were achieved in mice treated with a single dose of 2 mg/kg and in mice treated with two doses of 1 mg/kg, 8 h apart. Furthermore, acute and chronic histopathological studies demonstrated absent nephrotoxicity and moderate hepatotoxicity. The results demonstrated the efficacy of Fluopsin C against MDR organisms in in vitro and in vivo models, and hence it can be a novel therapeutic agent for the control of severe MDR infections.

14.
Sci Rep ; 9(1): 6438, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015652

RESUMO

In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cryptococcus gattii/fisiologia , RNA-Seq , Transcriptoma/fisiologia , Cryptococcus gattii/ultraestrutura
15.
Sci Rep ; 8(1): 12781, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143666

RESUMO

The present study tested the effects of a newly identified indolin-3-one compound (compound 1), produced by Pseudomonas aeruginosa, on HepG2 cells. The MTT assays demonstrated decreased metabolic activities in HepG2 cells treated with compound 1, with dose- and time-dependent intensifying effect, starting at a concentration of 40 µM. The IC50 after 24, 48, 72, and 96 h treatments were 41.35, 52.7, 92.79 and 66.65 µM of compound 1, respectively. Below 80 µM, no significative damage on erythrocytes membranes was observed by the hemolytic assays. The RT-qPCR revealed that the compound modulated key genes involved in carcinogenesis process, indicating possible indolin-3-one mechanisms of action. The data showed that gene expression alterations promoted by compound 1, in concentrations up to 60 µM after 48 h, led to a decrease in cellular progression and there was no direct cellular damage. In addition, non-cytotoxic concentrations of compound 1 halved the concentration of the chemotherapeutic doxorubicin, maintaining similar therapeutic effect against HepG2 cells. The novelty of the molecule and the biological activities observed in the present study emphasize the potential of the compound 1 in cancer therapy research.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Genes Neoplásicos , Indóis/farmacologia , Pseudomonas aeruginosa/química , Biomarcadores Tumorais/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Eritrócitos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Indóis/química , Indóis/isolamento & purificação
16.
Front Chem ; 5: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966922

RESUMO

The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

17.
Front Microbiol ; 8: 1102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659907

RESUMO

One of the most important postharvest plant pathogens that affect strawberries, grapes and tomatoes is Botrytis cinerea, known as gray mold. The fungus remains in latent form until spore germination conditions are good, making infection control difficult, causing great losses in the whole production chain. This study aimed to purify and identify phenazine-1-carboxylic acid (PCA) produced by the Pseudomonas aeruginosa LV strain and to determine its antifungal activity against B. cinerea. The compounds produced were extracted with dichloromethane and passed through a chromatographic process. The purity level of PCA was determined by reversed-phase high-performance liquid chromatography semi-preparative. The structure of PCA was confirmed by nuclear magnetic resonance and electrospray ionization mass spectrometry. Antifungal activity was determined by the dry paper disk and minimum inhibitory concentration (MIC) methods and identified by scanning electron microscopy and confocal microscopy. The results showed that PCA inhibited mycelial growth, where MIC was 25 µg mL-1. Microscopic analysis revealed a reduction in exopolysaccharide (EPS) formation, showing distorted and damaged hyphae of B. cinerea. The results suggested that PCA has a high potential in the control of B. cinerea and inhibition of EPS (important virulence factor). This natural compound is a potential alternative to postharvest control of gray mold disease.

18.
J Ethnopharmacol ; 198: 313-323, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28089736

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Limonium brasiliense (Boiss.) Kuntze (Plumbaginaceae) is commonly known as "baicuru" or "guaicuru" and preparations of its dried rhizomes have been popularly used in the treatment of premenstrual syndrome and menstrual disorder, and as an antiseptic in genito-urinary infections. This study evaluated the potential antibacterial activity of rhizome extracts against multidrug-resistant bacterial strains using statistical mixture design. MATERIALS AND METHODS: The statistical design of four components (water, methanol, acetone, and ethanol) produced 15 different extracts and also a confirmatory experiment, which was performed using water:acetone (3:7, v/v). The crude extracts and their ethyl-acetate fractions were tested against vancomycin-resistant Enterococcus faecium (VREfm), methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, all of which have been implicated in hospital and community-acquired infections. The dry residue, total polyphenol, gallocatechin and epigallocatechin contents of the extracts were also tested and statistical analysis was applied in order to define the fit models to predict the result of each parameter for any mixture of components. The principal component and hierarchical clustering analyses (PCA and HCA) of chromatographic data, as well as mass spectrometry (MS) analysis were performanced to determine the main compounds present in the extracts. RESULTS: The Gram-positive bacteria were susceptible to inhibition of bacterial growth, in special the ethyl-acetate fraction of ternary extracts from water:acetone:ethanol and methanol:acetone:ethanol against, respectively, VREfm (MIC=19µg/mL) and MRSA (MIC=39µg/mL). On the other hand, moderate activity of the ethyl-acetate fractions from primary (except water), secondary and ternary extracts (MIC=625µg/mL) was noted against KPC. The quadratic and special cubic models were significant for polyphenols and gallocatechin contents, respectively. Fit models to dry residue and epigallocatechin contents were not possible. PCA and HCA of the chromatographic fingerprints were disturbed by displacement retention time of some peaks, but the ultraviolet spectra indicated the homogeneous presence of flavan-3-ols characteristic of tannins. The MS confirmed the presence of gallic acid, gallocatechin, and epigallocatechin in extracts, and suggested the presence of monomers and dimers of B- and A-type prodelphinidins gallate, as well as a methyl gallate. CONCLUSION: Our results showed the antibacterial potential of L. brasiliense extracts against multidrug-resistant Gram-positive bacteria, such as VREfm and MRSA. The statistical design was a important tool to evaluate the biological activity by optimized form. The presence of some phenolic compounds was also demonstrated in extracts.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plumbaginaceae/química , Antibacterianos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Análise de Componente Principal , Rizoma
19.
Front Plant Sci ; 7: 1708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920781

RESUMO

Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

20.
Food Chem ; 212: 703-11, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374587

RESUMO

Approximately 70% of the Brazilian production of guaraná (Paullinia cupana) seeds is absorbed by the beverage industries. Guaraná has several pharmacological properties: energy stimulant, antimicrobial, chemoprophylactic, antigenotoxic, antidepressive, anxiolytic, and anti-amnesic effects. Supercritical carbon dioxide extraction of bioactive compounds from guaraná seeds was carried out and optimized by an orthogonal array design (OA9(3(4))). The factors/levels studied were: modifier(s) (ethanol and/or methanol), extraction time (20, 40, and 60min), temperature (40, 50, and 60°C), and pressure (100, 200, and 300bar). The statistical design was repeated with increasing proportions of modifiers. The percentage of modifier used was proportional to the amount of polar compounds extracted. The best conditions for the supercritical extraction, based on the content of polyphenols, epicatechin/catechin quantification, yield and operating cost, proved to be: 40% ethanol:methanol during 40min, under 40°C, and 100bar. The temperature had a significant effect on the total phenolic content.


Assuntos
Cafeína/química , Paullinia/química , Extratos Vegetais/química , Polifenóis/química , Sementes/química , Anti-Infecciosos/química , Brasil , Catequina/química , Cromatografia Líquida de Alta Pressão , Etanol/química , Metanol/química , Microscopia Eletrônica de Varredura , Pressão , Controle de Qualidade , Staphylococcus aureus/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...