Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113795, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38367238

RESUMO

Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Toxoplasmose , Animais , Camundongos , Células Dendríticas , Fatores Reguladores de Interferon/genética , Interleucina-12
2.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
3.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778396

RESUMO

Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights: Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.

4.
Nat Commun ; 14(1): 1049, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828815

RESUMO

Intracellular parasites from the Leishmania genus cause Leishmaniasis, a disease affecting millions of people worldwide. NLRP3 inflammasome is key for disease outcome, but the molecular mechanisms upstream of the inflammasome activation are still unclear. Here, we demonstrate that despite the absence of pyroptosis, Gasdermin-D (GSDMD) is active at the early stages of Leishmania infection in macrophages, allowing transient cell permeabilization, potassium efflux, and NLRP3 inflammasome activation. Further, GSDMD is processed into a non-canonical 25 kDa fragment. Gsdmd-/- macrophages and mice exhibit less NLRP3 inflammasome activation and are highly susceptible to infection by several Leishmania species, confirming the role of GSDMD for inflammasome-mediated host resistance. Active NLRP3 inflammasome and GSDMD are present in skin biopsies of patients, demonstrating activation of this pathway in human leishmaniasis. Altogether, our findings reveal that Leishmania subverts the normal functions of GSDMD, an important molecule to promote inflammasome activation and immunity in Leishmaniasis.


Assuntos
Leishmania , Leishmaniose , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leishmania/metabolismo , Piroptose/fisiologia
5.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103544

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Inflamassomos , Animais , Humanos , Agentes de Imunomodulação , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2
6.
Mol Microbiol ; 117(2): 293-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783412

RESUMO

Salmonellosis is a public health problem caused by Salmonella sp., a highly adapted facultative intracellular pathogen. After internalization, Salmonella sp. Manipulates several host processes, mainly through the activation of the type III secretion system (T3SS), including modification of host lipid metabolism and lipid droplet (LD) accumulation. LDs are dynamic and complex lipid-rich organelles involved in several cellular processes. The present study investigated the mechanism involved in LD biogenesis in Salmonella-infected macrophages and its role in bacterial pathogenicity. Here, we reported that S. Typhimurium induced a rapid time-dependent increase of LD formation in macrophages. The LD biogenesis was demonstrated to depend on Salmonella's viability and SPI1-related T3SS activity, with the participation of Toll-Like Receptor (TLR) signaling. We also observed that LD accumulation occurs through TLR2-dependent signaling and is counter-regulated by TLR4. Last, the pharmacologic modulation of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced the intracellular bacterial proliferation and impaired the prostaglandin E2 (PGE2 ) synthesis. Collectively, our data suggest the role of LDs on S. typhimurium intracellular survival and replication in macrophages. This data set provides new perspectives for future investigations about LDs in host-pathogen interaction.


Assuntos
Gotículas Lipídicas , Infecções por Salmonella , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Macrófagos/microbiologia , Sistemas de Secreção Tipo III/metabolismo
7.
Cells ; 12(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36611853

RESUMO

Anti-synthetase syndrome (ASSD) is an autoimmune disorder characterized by inflammatory interstitial lung disease (ILD). The main objective of this work was to quantify the concentrations of cytokines and molecules associated with inflammasome activation in bronchoalveolar lavage (BAL) of patients with ASSD and a comparison group of systemic sclerosis (SSc) patients. Cytokines and lactate dehydrogenase (LDH) were determined using the concentrated BAL protein. The activity of caspase-1 and concentration of NLRP3 with the protein purified from the cell pellet in each group of patients. We found higher caspase-1 levels in ASSD vs. SSc, 1.25 RFU vs. 0.75 RFU p = 0.003, and LDH levels at 0.15 OD vs. 0.09 OD p < 0.001. A significant difference was observed in molecules associated with inflammasome activation, IL-18: 1.42 pg/mL vs. 0.87 pg/mL p = 0.02 and IFN-γ: 0.9 pg/mL vs. 0.86 pg/mL, p = 0.01. A positive correlation was found between caspase-1 and LDH in the patients with ASSD Rho 0.58 (p = 0.008) but not in the SSc group. In patients with ASSD, greater caspase-1 and higher LDH activity were observed in BAL, suggesting cell death due to pyroptosis and activation of the inflammasome pathway.


Assuntos
Inflamassomos , Escleroderma Sistêmico , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Citocinas , Escleroderma Sistêmico/complicações , Pulmão/metabolismo , Caspases
8.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231615

RESUMO

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Assuntos
COVID-19/patologia , COVID-19/virologia , Inflamassomos/metabolismo , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Apoptose , Comorbidade , Citocinas/biossíntese , Humanos , Pulmão/patologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mudanças Depois da Morte , Resultado do Tratamento
9.
J Leukoc Biol ; 108(4): 1117-1127, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531834

RESUMO

Inflammasomes are cytosolic multiprotein complexes that sense microbial infections or host cell damage, triggering cytokine production and a proinflammatory form of cell death, called pyroptosis. Whereas pyroptosis and cytokine production may often promote host resistance to infections, uncontrolled inflammasome activation leads to autoinflammatory diseases in humans. Among the multiple inflammasomes described, the neuronal apoptosis inhibitory protein/nucleotide-binding domain leucine-rich repeat-containing protein family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome emerged as a critical component for the restriction of bacterial infections. Accordingly, our understanding of this inflammasome advanced remarkably over the last 10 yr, expanding our knowledge about ligand-receptor interaction; cryo-EM structure; and downstream effectors and substrates, such as gasdermin-D, caspase-1, caspase-8, and caspase-7. In this review, we discuss recent advances on the biology of the NLRC4 inflammasome, in terms of structure and activation mechanisms, importance in bacterial and nonbacterial diseases, and the identification of NLRC4 gain-of-function mutations leading to NLRC4-associated autoinflammatory diseases in humans.


Assuntos
Doenças Autoimunes/imunologia , Infecções Bacterianas/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Inflamassomos/imunologia , Animais , Doenças Autoimunes/patologia , Infecções Bacterianas/patologia , Caspase 1/imunologia , Caspase 7 , Caspase 8/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Ligação a Fosfato/imunologia
10.
J Leukoc Biol ; 106(3): 631-640, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063608

RESUMO

The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1ß production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1ß secretion, because priming triggers robust up-regulation of pro-IL-1ß and CASP11 that are important for efficient processing of CASP1 and IL-1ß. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.


Assuntos
Inflamassomos/metabolismo , Leishmania mexicana/fisiologia , Macrófagos/parasitologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ativação Enzimática , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/enzimologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Ligantes , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Parasitos/crescimento & desenvolvimento , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Regulação para Cima
11.
Cell Rep ; 26(2): 429-437.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625325

RESUMO

Activation of the NLRP3 inflammasome by Leishmania parasites is critical for the outcome of leishmaniasis, a disease that affects millions of people worldwide. We investigate the mechanisms involved in NLRP3 activation and demonstrate that caspase-11 (CASP11) is activated in response to infection by Leishmania species and triggers the non-canonical activation of NLRP3. This process accounts for host resistance to infection in macrophages and in vivo. We identify the parasite membrane glycoconjugate lipophosphoglycan (LPG) as the molecule involved in CASP11 activation. Cytosolic delivery of LPG in macrophages triggers CASP11 activation, and infections performed with Lpg1-/- parasites reduce CASP11/NLRP3 activation. Unlike bacterial LPS, purified LPG does not activate mouse CASP11 (or human Casp4) in vitro, suggesting the participation of additional molecules for LPG-mediated CASP11 activation. Our data identify a parasite molecule involved in CASP11 activation, thereby establishing the mechanisms underlying inflammasome activation in response to Leishmania species.


Assuntos
Caspases Iniciadoras/metabolismo , Glicoesfingolipídeos/metabolismo , Inflamassomos/metabolismo , Leishmania/metabolismo , Leishmania/patogenicidade , Leishmaniose/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Curr Issues Mol Biol ; 25: 99-132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28875942

RESUMO

Inflammasomes are multiprotein platforms assembled in the cytosol in response to pathogens and cell stress. Inflammasomes are recognized by their important role on defenses against bacterial infections and have been also implicated in a range of human inflammatory disorders. Intracellular sensors such as NLRP1, NLRP3, NLRC4, AIM2 and Pyrin induce assembly of inflammasomes, while caspase-11 induces the non-canonical pathway for activation of the NLRP3 inflammasome. The formation of the inflammasome leads to caspase-1 activation that triggers pyroptosis and activation of interleukin-1ß (IL-1ß) and IL-18. Pyroptotic cell death and cytokines production are involved in restriction of bacterial replication by limiting the replication niche of intracellular bacteria and by inducing inflammatory responses. In this review we focus on the mechanisms mediated by inflammasome activation that leads to inflammatory responses and restriction of bacterial infection.


Assuntos
Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Inflamassomos/imunologia , Piroptose/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Caspase 1/genética , Caspase 1/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR , Pirina/genética , Pirina/imunologia , Piroptose/genética , Transdução de Sinais , Linfócitos T/microbiologia
13.
J Immunol ; 200(2): 768-774, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212905

RESUMO

Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-ß induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites.


Assuntos
DNA de Protozoário/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Plasmodium falciparum/genética , Adolescente , Adulto , Células Cultivadas , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Fator Regulador 3 de Interferon/metabolismo , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Transdução de Sinais , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-28439500

RESUMO

Sepsis is a severe syndrome that arises when the host response to an insult is exacerbated, leading to organ failure and frequently to death. How a chronic infection that causes a prolonged Th1 expansion affects the course of sepsis is unknown. In this study, we showed that mice chronically infected with Toxoplasma gondii were more susceptible to sepsis induced by cecal ligation and puncture (CLP). Although T. gondii-infected mice exhibited efficient control of the bacterial burden, they showed increased mortality compared to the control groups. Mechanistically, chronic T. gondii infection induces the suppression of Th2 lymphocytes via Gata3-repressive methylation and simultaneously induces long-lived IFN-γ-producing CD4+ T lymphocytes, which promotes systemic inflammation that is harmful during CLP. Chronic T. gondii infection intensifies local and systemic Th1 cytokines as well as nitric oxide production, which reduces systolic and diastolic arterial blood pressures after sepsis induction, thus predisposing the host to septic shock. Blockade of IFN-γ prevented arterial hypotension and prolonged the host lifespan by reducing the cytokine storm. Interestingly, these data mirrored our observation in septic patients, in which sepsis severity was positively correlated to increased levels of IFN-γ in patients who were serologically positive for T. gondii. Collectively, these data demonstrated that chronic infection with T. gondii is a critical factor for sepsis severity that needs to be considered when designing strategies to prevent and control the outcome of this devastating disease.


Assuntos
Coinfecção/patologia , Sepse/complicações , Sepse/patologia , Toxoplasmose/complicações , Animais , Modelos Animais de Doenças , Interferon gama/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células Th1/imunologia , Células Th2/imunologia
15.
Cell Host Microbe ; 20(1): 49-59, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27414497

RESUMO

Induction of type I interferon (IFN) in response to microbial pathogens depends on a conserved cGAS-STING signaling pathway. The presence of DNA in the cytoplasm activates cGAS, while STING is activated by cyclic dinucleotides (cdNs) produced by cGAS or from bacterial origins. Here, we show that Group B Streptococcus (GBS) induces IFN-ß production almost exclusively through cGAS-STING-dependent recognition of bacterial DNA. However, we find that GBS expresses an ectonucleotidase, CdnP, which hydrolyzes extracellular bacterial cyclic-di-AMP. Inactivation of CdnP leads to c-di-AMP accumulation outside the bacteria and increased IFN-ß production. Higher IFN-ß levels in vivo increase GBS killing by the host. The IFN-ß overproduction observed in the absence of CdnP is due to the cumulative effect of DNA sensing by cGAS and STING-dependent sensing of c-di-AMP. These findings describe the importance of a bacterial c-di-AMP ectonucleotidase and suggest a direct bacterial mechanism that dampens activation of the cGAS-STING axis.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Pirofosfatases/metabolismo , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/metabolismo , Biotransformação , Streptococcus agalactiae/enzimologia
16.
Cell Rep ; 15(11): 2438-48, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264171

RESUMO

The innate immune system is the first line of defense against Neisseria gonorrhoeae (GC). Exposure of cells to GC lipooligosaccharides induces a strong immune response, leading to type I interferon (IFN) production via TLR4/MD-2. In addition to living freely in the extracellular space, GC can invade the cytoplasm to evade detection and elimination. Double-stranded DNA introduced into the cytosol binds and activates the enzyme cyclic-GMP-AMP synthase (cGAS), which produces 2'3'-cGAMP and triggers STING/TBK-1/IRF3 activation, resulting in type I IFN expression. Here, we reveal a cytosolic response to GC DNA that also contributes to type I IFN induction. We demonstrate that complete IFN-ß induction by live GC depends on both cGAS and TLR4. Type I IFN is detrimental to the host, and dysregulation of iron homeostasis genes may explain lower bacteria survival in cGAS(-/-) and TLR4(-/-) cells. Collectively, these observations reveal cooperation between TLRs and cGAS in immunity to GC infection.


Assuntos
Interferon Tipo I/metabolismo , Neisseria gonorrhoeae/fisiologia , Nucleotidiltransferases/metabolismo , Receptor 4 Toll-Like/metabolismo , Sistemas de Secreção Bacterianos , Linhagem Celular , DNA Bacteriano/metabolismo , Humanos , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Nucleotídeos Cíclicos/metabolismo , Transfecção
17.
mBio ; 6(6): e01605-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578679

RESUMO

UNLABELLED: High levels of circulating immunocomplexes (ICs) are found in patients with either infectious or sterile inflammation. We report that patients with either Plasmodium falciparum or Plasmodium vivax malaria have increased levels of circulating anti-DNA antibodies and ICs containing parasite DNA. Upon stimulation with malaria-induced ICs, monocytes express an NF-κB transcriptional signature. The main source of IC-induced proinflammatory cytokines (i.e., tumor necrosis factor alpha [TNF-α] and interleukin-1ß [IL-1ß])in peripheral blood mononuclear cells from acute malaria patients was found to be a CD14(+) CD16 (FcγRIIIA)(+) CD64 (FcγRI)(high) CD32 (FcγRIIB)(low) monocyte subset. Monocytes from convalescent patients were predominantly of the classical phenotype (CD14(+) CD16(-)) that produces high levels of IL-10 and lower levels of TNF-α and IL-1ß in response to ICs. Finally, we report a novel role for the proinflammatory activity of ICs by demonstrating their ability to induce inflammasome assembly and caspase-1 activation in human monocytes. These findings illuminate our understanding of the pathogenic role of ICs and monocyte subsets and may be relevant for future development of immunity-based interventions with broad applications to systemic inflammatory diseases. IMPORTANCE: Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA activate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results further suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights toward developing novel therapeutic interventions for this devastating disease.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Citocinas/metabolismo , DNA de Protozoário/imunologia , Inflamassomos/metabolismo , Malária Falciparum/patologia , Malária Vivax/patologia , Monócitos/metabolismo , Complexo Antígeno-Anticorpo/sangue , Antígenos CD/análise , Humanos , Imunofenotipagem , Malária Falciparum/imunologia , Malária Vivax/imunologia , Monócitos/química , Multimerização Proteica
18.
PLoS Pathog ; 10(1): e1003885, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453977

RESUMO

Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1ß. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1ß expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1ß upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+)CD16(-)Caspase-1(+) and CD14(dim)CD16(+)Caspase-1(+) monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1ß after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1ß and hypersensitivity to secondary bacterial infection during malaria.


Assuntos
Infecções Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Malária Vivax/microbiologia , Plasmodium chabaudi/metabolismo , Plasmodium vivax/metabolismo , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Caspase 1/genética , Caspase 1/imunologia , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Malária Vivax/imunologia , Malária Vivax/metabolismo , Malária Vivax/patologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Plasmodium chabaudi/imunologia , Plasmodium vivax/imunologia , Choque Séptico/genética , Choque Séptico/imunologia , Choque Séptico/metabolismo , Choque Séptico/patologia
19.
Cell Host Microbe ; 13(1): 42-53, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23290966

RESUMO

"Triple-defective" (3d) mice carrying a mutation in UNC93B1, a chaperone for the endosomal nucleic acid-sensing (NAS) Toll-like receptors TLR3, TLR7, and TLR9, are highly susceptible to Toxoplasma gondii infection. However, none of the single or even the triple NAS-TLR-deficient animals recapitulated the 3d susceptible phenotype to experimental toxoplasmosis. Investigating this further, we found that while parasite RNA and DNA activate innate immune responses via TLR7 and TLR9, TLR11 and TLR12 working as heterodimers are required for sensing and responding to Toxoplasma profilin. Consequently, the triple TLR7/TLR9/TLR11-deficient mice are highly susceptible to T. gondii infection, recapitulating the phenotype of 3d mice. Humans lack functional TLR11 and TLR12 genes. Consistently, human cells produce high levels of proinflammatory cytokines in response to parasite-derived RNA and DNA, but not to Toxoplasma profilin, supporting a more critical role for NAS-TLRs in human toxoplasmosis.


Assuntos
Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Receptores Toll-Like/imunologia , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Animais , DNA de Protozoário/genética , DNA de Protozoário/imunologia , Dimerização , Resistência à Doença , Feminino , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA de Protozoário/genética , RNA de Protozoário/imunologia , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptores Toll-Like/química , Receptores Toll-Like/genética , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/parasitologia
20.
PLoS One ; 7(5): e36245, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22567144

RESUMO

Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Imunidade Celular/imunologia , Proteínas de Membrana/imunologia , Linfócitos T/imunologia , Trypanosoma cruzi/imunologia , Adjuvantes Imunológicos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...