Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 5(2): fcad059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013172

RESUMO

Obesity is defined as abnormal or excessive fat accumulation that may impair health and is a risk factor for developing other diseases, such as type 2 diabetes and cardiovascular disorder. Obesity is also associated with structural and functional alterations in the brain, and this condition has been shown to increase the risk of Alzheimer's disease. However, while obesity has been associated with neurodegenerative processes, its impact on brain cell composition remains to be determined. In the current study, we used the isotropic fractionator method to determine the absolute composition of neuronal and non-neuronal cells in different brain regions of the genetic mouse models of obesity Lepob/ob and LepRNull/Null . Our results show that 10- to 12-month-old female Lepob/ob and LepRNull/Null mice have reduced neuronal number and density in the hippocampus compared to C57BL/6 wild-type mice. Furthermore, LepRNull/Null mice have increased density of non-neuronal cells, mainly glial cells, in the hippocampus, frontal cortex and hypothalamus compared to wild-type or Lepob/ob mice, indicating enhanced inflammatory responses in different brain regions of the LepRNull/Null model. Collectively, our findings suggest that obesity might cause changes in brain cell composition that are associated with neurodegenerative and inflammatory processes in different brain regions of female mice.

2.
Front Cell Neurosci ; 10: 190, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547177

RESUMO

One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole brain and also in discrete regions of interest, with the potential to investigate non-neuronal alterations. Moreover, IF could be used in addition or in substitution to classical stereological techniques or TTC staining used so far, since it is fast, precise and easily combined with complex molecular analysis.

3.
Brain ; 136(Pt 12): 3738-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24136825

RESUMO

Alzheimer's disease is the commonest cause of dementia in the elderly, but its pathological determinants are still debated. Amyloid-ß plaques and neurofibrillary tangles have been implicated either directly as disruptors of neural function, or indirectly by precipitating neuronal death and thus causing a reduction in neuronal number. Alternatively, the initial cognitive decline has been attributed to subtle intracellular events caused by amyloid-ß oligomers, resulting in dementia after massive synaptic dysfunction followed by neuronal degeneration and death. To investigate whether Alzheimer's disease is associated with changes in the absolute cell numbers of ageing brains, we used the isotropic fractionator, a novel technique designed to determine the absolute cellular composition of brain regions. We investigated whether plaques and tangles are associated with neuronal loss, or whether it is dementia that relates to changes of absolute cell composition, by comparing cell numbers in brains of patients severely demented with those of asymptomatic individuals-both groups histopathologically diagnosed as Alzheimer's-and normal subjects with no pathological signs of the disease. We found a great reduction of neuronal numbers in the hippocampus and cerebral cortex of demented patients with Alzheimer's disease, but not in asymptomatic subjects with Alzheimer's disease. We concluded that neuronal loss is associated with dementia and not the presence of plaques and tangles, which may explain why subjects with histopathological features of Alzheimer's disease can be asymptomatic; and exclude amyloid-ß deposits as causes for the reduction of neuronal numbers in the brain. We found an increase of non-neuronal cell numbers in the cerebral cortex and subcortical white matter of demented patients with Alzheimer's disease when compared with asymptomatic subjects with Alzheimer's disease and control subjects, suggesting a reactive glial cell response in the former that may be related to the symptoms they present.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Contagem de Células , Feminino , Humanos , Indóis , Masculino , Emaranhados Neurofibrilares/patologia , Fosfopiruvato Hidratase/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...