Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(7): e202300548, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381042

RESUMO

Several novel chemical series were identified that modulate glucocerebrosidase (GCase). Compounds from these series are active on glucosylceramide, unlike other known GCase modulators. We obtained GCase crystal structures with two compounds that have distinct chemotypes. Positive allosteric modulators bind to a site on GCase and induce conformational changes, but also induce an equilibrium state between monomer and dimer.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Glucosilceramidas , Hidrólise , Doença de Gaucher/tratamento farmacológico
2.
Epilepsia ; 56(11): 1669-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26434565

RESUMO

Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/terapia , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/terapia , Anticonvulsivantes/uso terapêutico , Epilepsia Resistente a Medicamentos/epidemiologia , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Malformações do Desenvolvimento Cortical/epidemiologia , Resultado do Tratamento
3.
J Neurosci ; 33(17): 7393-406, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616545

RESUMO

In Huntington's disease (HD) mouse models, spontaneous inhibitory synaptic activity is enhanced in a subpopulation of medium-sized spiny neurons (MSNs), which could dampen striatal output. We examined the potential source(s) of increased inhibition using electrophysiological and optogenetic methods to assess feedback and feedforward inhibition in two transgenic mouse models of HD. Single whole-cell patch-clamp recordings demonstrated that increased GABA synaptic activity impinges principally on indirect pathway MSNs. Dual patch recordings between MSNs demonstrated reduced connectivity between MSNs in HD mice. However, while connectivity was strictly unidirectional in controls, in HD mice bidirectional connectivity occurred. Other sources of increased GABA activity in MSNs also were identified. Dual patch recordings from fast spiking (FS) interneuron-MSN pairs demonstrated greater but variable amplitude responses in MSNs. In agreement, selective optogenetic stimulation of parvalbumin-expressing, FS interneurons induced significantly larger amplitude MSN responses in HD compared with control mice. While there were no differences in responses of MSNs evoked by activating single persistent low-threshold spiking (PLTS) interneurons in recorded pairs, these interneurons fired more action potentials in both HD models, providing another source for increased frequency of spontaneous GABA synaptic activity in MSNs. Selective optogenetic stimulation of somatostatin-expressing, PLTS interneurons did not reveal any significant differences in responses of MSNs in HD mice. These findings provide strong evidence that both feedforward and to a lesser extent feedback inhibition to MSNs in HD can potentially be sources for the increased GABA synaptic activity of indirect pathway MSNs.


Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Doença de Huntington/fisiopatologia , Inibição Neural/fisiologia , Animais , Feminino , Humanos , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
4.
J Neurophysiol ; 107(2): 677-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072510

RESUMO

The R6/2 mouse is the most frequently used model for experimental and preclinical drug trials in Huntington's disease (HD). When the R6/2 mouse was first developed, it carried exon 1 of the huntingtin gene with ~150 cytosine-adenine-guanine (CAG) repeats. The model presented with a rapid and aggressive phenotype that shared many features with the human condition and was particularly similar to juvenile HD. However, instability in the CAG repeat length due to different breeding practices has led to both decreases and increases in average CAG repeat lengths among colonies. Given the inverse relationship in human HD between CAG repeat length and age at onset and to a degree, the direct relationship with severity of disease, we have investigated the effect of altered CAG repeat length. Four lines, carrying ~110, ~160, ~210, and ~310 CAG repeats, were examined using a battery of tests designed to assess the basic R6/2 phenotype. These included electrophysiological properties of striatal medium-sized spiny neurons, motor activity, inclusion formation, and protein expression. The results showed an unpredicted, inverted "U-shaped" relationship between CAG repeat length and phenotype; increasing the CAG repeat length from 110 to 160 exacerbated the R6/2 phenotype, whereas further increases to 210 and 310 CAG repeats greatly ameliorated the phenotype. These findings demonstrate that the expected relationship between CAG repeat length and disease severity observed in humans is lost in the R6/2 mouse model and highlight the importance of CAG repeat-length determination in preclinical drug trials that use this model.


Assuntos
Predisposição Genética para Doença/genética , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética , Análise de Variância , Animais , Peso Corporal/genética , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório/fisiologia , Genótipo , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Força Muscular/genética , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Técnicas de Patch-Clamp , Teste de Desempenho do Rota-Rod , Convulsões/etiologia , Convulsões/genética
5.
Neurobiol Dis ; 45(1): 310-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21889982

RESUMO

Tuberous Sclerosis Complex (TSC) and cortical dysplasia Type IIB (CDIIB) share histopathologic features that suggest similar epileptogenic mechanisms. This study compared the morphological and electrophysiological properties of cortical cells in tissue from pediatric TSC (n=20) and CDIIB (n=20) patients using whole-cell patch clamp recordings and biocytin staining. Cell types were normal-appearing and dysmorphic-cytomegalic pyramidal neurons, interneurons, and giant/balloon cells, including intermediate neuronal-glial cells. In the cortical mantle, giant/balloon cells occurred more frequently in TSC than in CDIIB cases, whereas cytomegalic pyramidal neurons were found more frequently in CDIIB. Cell morphology and membrane properties were similar in TSC and CDIIB cases. Except for giant/balloon and intermediate cells, all neuronal cell types fired action potentials and displayed spontaneous postsynaptic currents. However, the frequency of spontaneous glutamatergic postsynaptic currents in normal pyramidal neurons and interneurons was significantly lower in CDIIB compared with TSC cases and the GABAergic activity was higher in all neuronal cell types in CDIIB. Further, acutely dissociated pyramidal neurons displayed higher sensitivity to exogenous application of GABA in CDIIB compared with TSC cases. These results indicate that, in spite of similar histopathologic features and basic cell membrane properties, TSC and CDIIB display differences in the topography of abnormal cells, excitatory and inhibitory synaptic network properties, and GABA(A) receptor sensitivity. These differences support the notion that the mechanisms of epileptogenesis could differ in patients with TSC and CDIIB. Consequently, pharmacologic therapies should take these findings into consideration.


Assuntos
Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Receptores de GABA/metabolismo , Esclerose Tuberosa/metabolismo , Potenciais de Ação/fisiologia , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interneurônios/metabolismo , Masculino , Malformações do Desenvolvimento Cortical/fisiopatologia , Convulsões/metabolismo , Convulsões/fisiopatologia , Esclerose Tuberosa/fisiopatologia
6.
J Huntingtons Dis ; 1(1): 17-25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25063187

RESUMO

There is morphological evidence for differential alterations in striatal medium-sized spiny neurons (MSNs) giving rise to the direct and indirect output pathways in Huntington's disease (HD). MSNs of the indirect pathway appear to be particularly vulnerable and markers for these neurons are lost early in postmortem brains and in genetic mouse models. In contrast, MSNs of the direct pathway appear to be relatively spared in the early stages. Because of the great morphological and electrophysiological similarities between MSNs of these pathways, until recently it was difficult to tease apart their functional alterations in HD models. The recent use of the enhanced green fluorescent protein gene as a reporter to identify dopamine D1 (direct pathway) and D2 (indirect pathway) receptor-expressing MSNs has made it possible to examine synaptic function in each pathway. The outcomes of such studies demonstrate significant time-dependent changes in the balance of excitatory and inhibitory inputs to both direct and indirect pathway MSNs in HD and emphasize early increases in both excitatory and inhibitory inputs to direct pathway MSNs. There also is a strong influence of alterations in dopamine modulation that possibly cause some of the changes in excitatory and inhibitory synaptic transmission in the HD models. These changes will markedly alter the output structures, the GPi and the SNr. In the future, the use of combined optogenetics with identified neurons in each pathway will help unravel the next set of questions about how the output nuclei are affected in HD.


Assuntos
Corpo Estriado/fisiopatologia , Doença de Huntington/fisiopatologia , Vias Neurais/fisiopatologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Transmissão Sináptica/fisiologia
7.
Front Syst Neurosci ; 5: 46, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720523

RESUMO

Imbalance in the activity of striatal direct and indirect pathway neurons contributes to motor disturbances in several neurodegenerative diseases. In Huntington's disease (HD), indirect pathway [dopamine (DA) D2 receptor-expressing] medium-sized spiny neurons (MSNs) are believed to show earlier vulnerability than direct pathway MSNs. We examined synaptic activity and DA modulation in MSNs forming the direct and indirect pathways in YAC128 and BACHD mouse models of HD. To visualize the two types of MSNs, we used mice expressing enhanced green fluorescent protein under the control of the promoter for the DA D1 or D2 receptor. Experiments were performed in early symptomatic (1.5 months) and symptomatic (12 months) mice. Behaviorally, early symptomatic mice showed increased stereotypies while symptomatic mice showed decreased motor activity. Electrophysiologically, at the early stage, excitatory and inhibitory transmission onto D1-YAC128 and D1-BACHD MSNs were increased, while there was no change in D2 MSNs. DA modulation of spontaneous excitatory postsynaptic currents (sEPSCs) in slices was absent in YAC128 cells at the early stage, but was restored by treating the slices with the DA depleter tetrabenazine (TBZ). In BACHD mice TBZ restored paired-pulse ratios and a D1 receptor antagonist induced a larger decrease of sEPSCs than in D1-WT cells, suggesting increased DA tone. Finally, TBZ decreased stereotypies in BACHD mice. These results indicate that by reducing DA or antagonizing D1 receptors, increases in inhibitory and excitatory transmission in early phenotypic direct pathway neurons can be normalized. In symptomatic YAC128 mice, excitatory synaptic transmission onto D1 MSNs was decreased, while inhibitory transmission was increased in D2 MSNs. These studies provide evidence for differential and complex imbalances in glutamate and GABA transmission, as well as in DA modulation, in direct and indirect pathway MSNs during HD progression.

8.
Front Syst Neurosci ; 5: 28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21617735

RESUMO

Dopamine, via activation of D1 receptors, enhances N-methyl-d-aspartate (NMDA) receptor-mediated responses in striatal medium-sized spiny neurons. However, the role of specific NMDA receptor subunits in this enhancement remains unknown. Here we used genetic and pharmacological tools to dissect the contribution of NR1 and NR2A/B subunits to NMDA responses and their modulation by dopamine receptors. We demonstrate that D1 enhancement of NMDA responses does not occur or is significantly reduced in mice with genetic knock-down of NR1 subunits, indicating a critical role of these subunits. Interestingly, spontaneous and evoked α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated responses were significantly enhanced in NR1 knock-down animals, probably as a compensatory mechanism for the marked reduction in NMDA receptor function. The NMDA receptor subunits NR2A and NR2B played differential roles in D1 modulation. Whereas genetic deletion or pharmacological blockade of NR2A subunits enhanced D1 potentiation of NMDA responses, blockade of NR2B subunits reduced this potentiation, suggesting that these regulatory subunits of the NMDA receptor counterbalance their respective functions. In addition, using D1 and D2 receptor EGFP-expressing mice, we demonstrate that NR2A subunits contribute more to NMDA responses in D1-MSSNs, whereas NR2B subunits contribute more to NMDA responses in D2 cells. The differential contribution of discrete receptor subunits to NMDA responses and dopamine modulation in the striatum has important implications for synaptic plasticity and selective neuronal vulnerability in disease states.

9.
ASN Neuro ; 3(3): e00060, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21542802

RESUMO

HD (Huntington's disease) is characterized by dysfunction and death of striatal MSNs (medium-sized spiny neurons). Excitotoxicity, transcriptional dysregulation and mitochondrial abnormalities are among the mechanisms that are proposed to play roles in HD pathogenesis. To determine the extent of cell-autonomous effects of mhtt (mutant huntingtin) protein on vulnerability to excitotoxic insult in MSNs in vivo, we measured the number of degenerating neurons in response to intrastriatal injection of QA (quinolinic acid) in presymptomatic and symptomatic transgenic (D9-N171-98Q, also known as DE5) mice that express mhtt in MSNs but not in cortex. After QA, the number of degenerating neurons in presymptomatic DE5 mice was not significantly different from the number in WT (wild-type) controls, suggesting the early, increased vulnerability to excitotoxicity demonstrated in other HD mouse models has a largely non-cell-autonomous component. Conversely, symptomatic DE5 mice showed significantly fewer degenerating neurons relative to WT, implying the resistance to excitotoxicity observed at later ages has a primarily cell-autonomous origin. Interestingly, mitochondrial complex II respiration was enhanced in striatum of symptomatic mice, whereas it was reduced in presymptomatic mice, both relative to their age-matched controls. Consistent with the QA data, MSNs from symptomatic mice showed decreased NMDA (N-methyl-d-aspartate) currents compared with age-matched controls, suggesting that in addition to aging, cell-autonomous mechanisms mitigate susceptibility to excitotoxicity in the symptomatic stage. Also, symptomatic DE5 mice did not display some of the electrophysiological alterations present in other HD models, suggesting that blocking the expression of mhtt in cortical neurons may restore corticostriatal function in HD.


Assuntos
Envelhecimento/fisiologia , Corpo Estriado/fisiologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Prosencéfalo/fisiologia , Animais , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/fisiologia , Eletrofisiologia , Proteína Huntingtina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , N-Metilaspartato/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Prosencéfalo/anatomia & histologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/patologia , Ácido Quinolínico/farmacologia
10.
J Neurosci ; 31(4): 1170-82, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21273402

RESUMO

There is considerable evidence that alterations in striatal medium-sized spiny neurons (MSSNs) giving rise to the direct (D1 receptor-expressing) and indirect (D2 receptor-expressing) pathways differentially contribute to the phenotype of Huntington's disease (HD). To determine how each subpopulation of MSSN is functionally affected, we examined spontaneous excitatory postsynaptic currents (sEPSCs) and dopamine (DA) modulation in two HD mouse models, the YAC128 and the BACHD (a bacterial-artificial chromosome). These mice also expressed enhanced green fluorescent protein (EGFP) under the control of the promoter for either DA D1 or D2 receptors to identify neurons. In early symptomatic YAC128 and BACHD mice, glutamate transmission was increased in both D1 and D2 MSSNs, but in different ways. D1 cells displayed increased sEPSC frequencies and decreased paired-pulse ratios (PPRs) while D2 cells displayed larger evoked glutamate currents but no change in sEPSC frequencies or PPRs. D1 receptor modulation of sEPSCs was absent in D1-YAC128 cells at the early symptomatic stage but was restored by treating the slices with tetrabenazine. In contrast, in fully symptomatic YAC128 mice, glutamate transmission was decreased specifically in D1 cells, and D1 receptor modulation was normal in D1-YAC128 cells. Behaviorally, early symptomatic mice showed increased stereotypies that were decreased by tetrabenazine treatment. Together, these studies support differential imbalances in glutamate and DA transmission in direct and indirect pathway MSSNs. Stereotypic behavior at an early stage could be explained by increased glutamate activity and DA tone in direct pathway neurons, whereas hypokinesia at later stages could result from reduced input onto these neurons.


Assuntos
Doença de Huntington/fisiopatologia , Neurônios/fisiologia , Potenciais de Ação , Fatores Etários , Animais , Corpo Estriado/fisiopatologia , Espinhas Dendríticas/fisiologia , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Doença de Huntington/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Mutantes , Atividade Motora , Regiões Promotoras Genéticas , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiologia , Comportamento Estereotipado , Transmissão Sináptica , Tetrabenazina/farmacologia
11.
Epilepsia ; 51 Suppl 3: 160-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618424

RESUMO

Tuberous sclerosis complex (TSC) and severe cortical dysplasia (CD), or CD type II according to Palmini classification, share histopathologic similarities, specifically the presence of cytomegalic neurons and balloon cells. In this study we examined the morphologic and electrophysiologic properties of cells in cortical tissue samples from pediatric patients with TSC and CD type II who underwent surgery for pharmacoresistant epilepsy. Normal-appearing pyramidal neurons from TSC and CD type II cases had similar passive membrane properties. However, the frequency of excitatory postsynaptic currents (EPSCs) was higher in neurons from TSC compared to severe CD cases, particularly the frequency of medium- and large-amplitude synaptic events. In addition, EPSCs rise and decay times were slower in normal cells from TSC compared to severe CD cases. Balloon cells were found more frequently in TSC cases, whereas cytomegalic pyramidal neurons occurred more often in CD type II cases. Both cell types were similar morphologically and electrophysiologically in TSC and severe CD. These results suggest that even though the histopathology in TSC and severe CD is similar, there are subtle differences in spontaneous synaptic activity and topographic distribution of abnormal cells. These differences may contribute to variable mechanisms of epileptogenesis in patients with TSC compared with CD type II.


Assuntos
Encéfalo/patologia , Malformações do Desenvolvimento Cortical/patologia , Esclerose Tuberosa/patologia , Encéfalo/citologia , Encéfalo/fisiopatologia , Pré-Escolar , Humanos , Malformações do Desenvolvimento Cortical/fisiopatologia , Potenciais da Membrana/fisiologia , Células Piramidais/patologia , Células Piramidais/fisiopatologia , Convulsões/patologia , Convulsões/fisiopatologia , Potenciais Sinápticos/fisiologia , Esclerose Tuberosa/fisiopatologia
12.
Epilepsia ; 51 Suppl 3: 166-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618425

RESUMO

Interneurons, gamma-aminobutyric acid (GABA)(A) receptor density, and subunit composition determine inhibitory function in pyramidal neurons and control excitability in cortex. Abnormalities in GABAergic cells or GABA(A) receptors could contribute to seizures in malformations of cortical development. Herein we review data obtained in resected cortex from pediatric epilepsy surgery patients with type I and type II cortical dysplasia (CD) and non-CD pathologies. Our studies found fewer interneurons immunolabeled for glutamic acid decarboxylase (GAD) in type II CD, whereas there were no changes in tissue from type I CD. GAD-labeled neurons had larger somata, and GABA transporter (VGAT and GAT1) staining showed a dense plexus surrounding cytomegalic neurons in type II CD. Functionally, neurons from type I CD tissue showed GABA currents with increased half maximal effective concentration compared to cells from the other groups. In type II CD, cytomegalic pyramidal neurons showed alterations in GABA currents, decreased sensitivity to zolpidem and zinc, and increased sensitivity to bretazenil. In addition, pyramidal neurons from type II CD displayed higher frequency of spontaneous inhibitory post synaptic currents. The GABAergic system is therefore, altered differently in cortex from type I and type II CD patients. Alterations in zolpidem, zinc, and bretazenil sensitivity and spontaneous inhibitory postsynaptic currents (IPSCs) suggest that type II CD neurons have altered GABA(A) receptor subunit composition and receive dense GABA inputs. These findings support the hypothesis that patients with type I and type II CD will respond differently to GABA receptor-mediated antiepileptic drugs and that cytomegalic neurons have features similar to immature neurons.


Assuntos
Interneurônios/fisiologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Receptores de GABA-A/fisiologia , Criança , Humanos , Interneurônios/patologia , Malformações do Desenvolvimento Cortical/patologia , Neocórtex/citologia , Neocórtex/patologia , Neocórtex/fisiopatologia , Células Piramidais/fisiologia , Convulsões/patologia , Convulsões/fisiopatologia , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/fisiologia
13.
ASN Neuro ; 2(2): e00033, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20396376

RESUMO

The discovery of the HD (Huntington's disease) gene in 1993 led to the creation of genetic mouse models of the disease and opened the doors for mechanistic studies. In particular, the early changes and progression of the disease could be followed and examined systematically. The present review focuses on the contribution of these genetic mouse models to the understanding of functional changes in neurons as the HD phenotype progresses, and concentrates on two brain areas: the striatum, the site of most conspicuous pathology in HD, and the cortex, a site that is becoming increasingly important in understanding the widespread behavioural abnormalities. Mounting evidence points to synaptic abnormalities in communication between the cortex and striatum and cell-cell interactions as major determinants of HD symptoms, even in the absence of severe neuronal degeneration and death.


Assuntos
Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/fisiologia , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Animais , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos
14.
CNS Neurosci Ther ; 16(3): 163-78, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20406248

RESUMO

Huntington's disease (HD) is caused by a CAG repeat expansion in exon 1 of the HD gene resulting in a long polyglutamine tract in the N-terminus of the protein huntingtin. Patients carrying the mutation display chorea in early stages followed by akinesia and sometimes dystonia in late stages. Other major symptoms include depression, anxiety, irritability or aggressive behavior, and apathy. Although many neuronal systems are affected, dysfunction and subsequent neurodegeneration in the basal ganglia and cortex are the most apparent pathologies. In HD, the primary hypothesis has been that there is an initial overactivity of glutamate neurotransmission that produces excitotoxicity followed by a series of complex changes that are different in the striatum and in the cortex. This review will focus on evidence for alterations in dopamine (DA)-glutamate interactions in HD, concentrating on the striatum and cortex. The most recent evidence points to decreases in DA and glutamate neurotransmission as the HD phenotype develops. However, there is some evidence for increased DA and glutamate functions that could be responsible for some of the early HD phenotype. Significant evidence indicates that glutamate and dopamine neurotransmission is affected in HD, compromising the fine balance in which DA modulates glutamate-induced excitation in the basal ganglia and cortex. Restoring the balance between glutamate and dopamine could be helpful to treat HD symptoms.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Doença de Huntington/metabolismo , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Ratos
15.
Neuron ; 65(2): 145-7, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20152121

RESUMO

Abnormally enhanced N-methyl-D-aspartate (NMDA) receptor function is implicated in Huntington's disease (HD). In this issue of Neuron and a recent issue of Nature Medicine, an abnormal balance between the activity of NMDA receptors at synaptic (prosurvival) and extrasynaptic (proapoptotic) sites has been uncovered in a cellular and a mouse model of HD.


Assuntos
Doença de Huntington/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Doença de Huntington/fisiopatologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
16.
Eur J Neurosci ; 31(1): 14-28, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20092552

RESUMO

Striatal medium-sized spiny neurons (MSSNs) receive glutamatergic inputs modulated presynaptically and postsynaptically by dopamine. Mice expressing the gene for enhanced green fluorescent protein as a reporter gene to identify MSSNs containing D1 or D2 receptor subtypes were used to examine dopamine modulation of spontaneous excitatory postsynaptic currents (sEPSCs) in slices and postsynaptic N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) currents in acutely isolated cells. The results demonstrated dopamine receptor-specific modulation of sEPSCs. Dopamine and D1 agonists increased sEPSC frequency in D1 receptor-expressing MSSNs (D1 cells), whereas dopamine and D2 agonists decreased sEPSC frequency in D2 receptor-expressing MSSNs (D2 cells). These effects were fully (D1 cells) or partially (D2 cells) mediated through retrograde signaling via endocannabinoids. A cannabinoid 1 receptor (CB1R) agonist and a blocker of anandamide transporter prevented the D1 receptor-mediated increase in sEPSC frequency in D1 cells, whereas a CB1R antagonist partially blocked the decrease in sEPSC frequency in D2 cells. At the postsynaptic level, low concentrations of a D1 receptor agonist consistently increased NMDA and AMPA currents in acutely isolated D1 cells, whereas a D2 receptor agonist decreased these currents in acutely isolated D2 cells. These results show that both glutamate release and postsynaptic excitatory currents are regulated in opposite directions by activation of D1 or D2 receptors. The direction of this regulation is also specific to D1 and D2 cells. We suggest that activation of postsynaptic dopamine receptors controls endocannabinoid mobilization, acting on presynaptic CB1Rs, thus modulating glutamate release differently in glutamate terminals projecting to D1 and D2 cells.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Corpo Estriado/fisiologia , Dopamina/metabolismo , Endocanabinoides , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , N-Metilaspartato/metabolismo , Neurônios/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
17.
J Neurosci ; 29(33): 10371-86, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19692612

RESUMO

Previously, we identified progressive alterations in spontaneous EPSCs and IPSCs in the striatum of the R6/2 mouse model of Huntington's disease (HD). Medium-sized spiny neurons from these mice displayed a lower frequency of EPSCs, and a population of cells exhibited an increased frequency of IPSCs beginning at approximately 40 d, a time point when the overt behavioral phenotype begins. The cortex provides the major excitatory drive to the striatum and is affected during disease progression. We examined spontaneous EPSCs and IPSCs of somatosensory cortical pyramidal neurons in layers II/III in slices from three different mouse models of HD: the R6/2, the YAC128, and the CAG140 knock-in. Results revealed that spontaneous EPSCs occurred at a higher frequency, and evoked EPSCs were larger in behaviorally phenotypic mice whereas spontaneous IPSCs were initially increased in frequency in all models and subsequently decreased in R6/2 mice after they displayed the typical R6/2 overt behavioral phenotype. Changes in miniature IPSCs and evoked IPSC paired-pulse ratios suggested altered probability of GABA release. Also, in R6/2 mice, blockade of GABA(A) receptors induced complex discharges in slices and seizures in vivo at all ages. In conclusion, altered excitatory and inhibitory inputs to pyramidal neurons in the cortex in HD appear to be a prevailing deficit throughout the development of the disease. Furthermore, the differences between synaptic phenotypes in cortex and striatum are important for the development of future therapeutic approaches, which may need to be targeted early in the development of the phenotype.


Assuntos
Córtex Cerebral/fisiologia , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Inibição Neural/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Células Piramidais/fisiologia
18.
J Neurosci ; 29(8): 2414-27, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19244517

RESUMO

Huntington disease is a genetic neurodegenerative disorder that produces motor, neuropsychiatric, and cognitive deficits and is caused by an abnormal expansion of the CAG tract in the huntingtin (htt) gene. In humans, mutated htt induces a preferential loss of medium spiny neurons in the striatum and, to a lesser extent, a loss of cortical neurons as the disease progresses. The mechanisms causing these degenerative changes remain unclear, but they may involve synaptic dysregulation. We examined the activity of the corticostriatal pathway using a combination of electrophysiological and optical imaging approaches in brain slices and acutely dissociated neurons from the YAC128 mouse model of Huntington disease. The results demonstrated biphasic age-dependent changes in corticostriatal function. At 1 month, before the behavioral phenotype develops, synaptic currents and glutamate release were increased. At 7 and 12 months, after the development of the behavioral phenotype, evoked synaptic currents were reduced. Glutamate release was decreased by 7 months and was markedly reduced by 12 months. These age-dependent alterations in corticostriatal activity were paralleled by a decrease in dopamine D(2) receptor modulation of the presynaptic terminal. Together, these findings point to dynamic alterations at the corticostriatal pathway and emphasize that therapies directed toward preventing or alleviating symptoms need to be specifically designed depending on the stage of disease progression.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Doença de Huntington/patologia , Vias Neurais/fisiopatologia , Fatores Etários , Análise de Variância , Animais , Biofísica , Cádmio/farmacologia , Células Cultivadas , Cromossomos Artificiais de Levedura/genética , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Expansão das Repetições de Trinucleotídeos/genética
19.
J Neurosci ; 29(7): 2193-204, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228972

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded CAG tract in the HD gene. Polyglutamine expansion of huntingtin (htt) results in early, progressive loss of medium spiny striatal neurons, as well as cortical neurons that project to the striatum. Excitotoxicity has been postulated to play a key role in the selective vulnerability of striatal neurons in HD. Early excitotoxic neuropathological changes observed in human HD brain include increased quinolinate (QUIN) concurrent with proliferative changes such as increased spine density and dendritic length. In later stages of the disease, degenerative-type changes are apparent, such as loss of dendritic arborization, a reduction in spine density and reduced levels of 3-hydroxykynurenine and QUIN. It is currently unknown whether sensitivity to excitotoxic stress varies between initiation and progression of disease. Here, we have assessed the excitotoxic phenotype in the YAC128 mouse model of HD by examining the response to excitotoxic stress at different stages of disease. Our results demonstrate that YAC128 mice display enhanced sensitivity to NMDA ex vivo and QUIN in vivo before obvious phenotypic changes. In contrast, 10-month-old symptomatic YAC128 mice are resistant to QUIN-induced neurotoxicity. These findings are paralleled by a significant increase in NMDAR-mediated membrane currents in presymptomatic YAC128 dissociated medium spiny neurons progressing to reduced NMDAR-mediated membrane currents with disease progression. These data highlight the dynamic nature of the mutant htt-mediated excitotoxic phenotype and suggests that therapeutic approaches to HD may need to be altered, depending on the stage and development of the disease.


Assuntos
Encéfalo/metabolismo , Predisposição Genética para Doença/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Estresse Fisiológico/genética , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Progressão da Doença , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Transgênicos , N-Metilaspartato/metabolismo , N-Metilaspartato/toxicidade , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Técnicas de Cultura de Órgãos , Fenótipo , Ácido Quinolínico/metabolismo , Ácido Quinolínico/toxicidade , Membranas Sinápticas/metabolismo , Membranas Sinápticas/patologia , Potenciais Sinápticos/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
Epilepsia ; 50(6): 1310-35, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19175385

RESUMO

Recent findings on the clinical, electroencephalography (EEG), neuroimaging, and surgical outcomes are reviewed comparing patients with Palmini type I (mild) and type II (severe) cortical dysplasia. Resources include peer-reviewed studies on surgically treated patients and a subanalysis of the 2004 International League Against Epilepsy (ILAE) Survey of Pediatric Epilepsy Surgery. These sources were supplemented with data from University of California, Los Angeles (UCLA). Cortical dysplasia is the most frequent histopathologic substrate in children, and the second most common etiology in adult epilepsy surgery patients. Cortical dysplasia patients present with seizures at an earlier age than other surgically treated etiologies, and 33-50% have nonlocalized scalp EEG and normal magnetic resonance imaging (MRI) scans. 2-((18)F)Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is positive in 75-90% of cases. After complete resection, 80% of patients are seizure free compared with 20% with incomplete resections. Compared with type I, patients with type II cortical dysplasia present at younger ages, have higher seizure frequencies, and are extratemporal. Type I dysplasia is found more often in adult patients in the temporal lobe and is often MRI negative. These findings identify characteristics of patients with mild and severe cortical dysplasia that define surgically treated epilepsy syndromes. The authors discuss future challenges to identifying and treating medically refractory epilepsy patients with cortical dysplasia.


Assuntos
Epilepsia/etiologia , Epilepsia/cirurgia , Malformações do Desenvolvimento Cortical , Avaliação de Resultados em Cuidados de Saúde , Depressão/etiologia , Epilepsia/classificação , Lateralidade Funcional , Humanos , Malformações do Desenvolvimento Cortical/classificação , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...