Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257803

RESUMO

Thromboembolism is a frequent cause of severity and mortality in COVID-19. However, the etiology of this phenomenon is not well understood. A cohort of 1,186 subjects, from the GEN-COVID consortium, infected by SARS-CoV-2 with different severity were stratified by sex and adjusted by age. Then, common coding variants from whole exome sequencing were mined by LASSO logistic regression. The homozygosity of the cell adhesion molecule P-selectin gene (SELP) rs6127 (c.1807G>A; p.Asp603Asn) which increases platelet activation is found to be associated with severity in the male subcohort of 513 subjects (Odds Ratio= 2.27, 95% Confidence Interval 1.54-3.36). As the SELP gene is downregulated by testosterone, the odd ratio is increased in males older than 50 (OR 2.42, 95% CI 1.53-3.82). Asn/Asn homozygotes have increased D-dimers values especially when associated with poly Q[≥]23 in the androgen receptor (AR) gene (OR 3.26, 95% CI 1.41-7.52). These results provide a rationale for the repurposing of antibodies against P-selectin as adjuvant therapy in rs6127 male homozygotes especially if older than 50 or with impaired AR gene. Key points{circ} The functional polymorphism rs6127 (p.Asp603Asn) in the testosterone-regulated SELP gene associates with COVID-19 severity and thrombosis. {circ}Conditions with decreased testosterone (old males), or decreased testosterone efficacy (AR gene polyQ [≥] 23) strengthen the association.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254158

RESUMO

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired autophagy and reduced TNF production was demonstrated in HEK293 cells transfected with TLR3-L412F plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (P=0.038). An increased frequency of autoimmune disorders as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20225680

RESUMO

BackgroundCOVID-19 presentation ranges from asymptomatic to fatal. The variability in severity may be due in part to impaired Interferon type I response due to specific mutations in the host genome or to autoantibodies, explaining about 15% of the cases when combined. Exploring the host genome is thus warranted to further elucidate disease variability. MethodsWe developed a synthetic approach to genetic data representation using machine learning methods to investigate complementary genetic variability in COVID-19 infected patients that may explain disease severity, due to poly-amino acids repeat polymorphisms. Using host whole-exome sequencing data, we compared extreme phenotypic presentations (338 severe versus 300 asymptomatic cases) of the entire (men and women) Italian GEN-COVID cohort of 1178 subjects infected with SARS-CoV-2. We then applied the LASSO Logistic Regression model on Boolean gene-based representation of the poly-amino acids variability. FindingsShorter polyQ alleles ([≤]22) in the androgen receptor (AR) conferred protection against a more severe outcome in COVID-19 infection. In the subgroup of males with age <60 years, testosterone was higher in subjects with AR long-polyQ ([≥]23), possibly indicating receptor resistance (p=0.004 Mann-Whitney U test). Inappropriately low testosterone levels for the long-polyQ alleles predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of testosterone, patients with long-polyQ ([≥]23) and age>60 years had increased levels of C Reactive Protein (p=0.018). InterpretationOur results may contribute to design reliable clinical and public health measures and provide a rationale to test testosterone treatment as adjuvant therapy in symptomatic COVID-19 men expressing AR polyQ longer than 23 repeats. FundingMIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020). Private donors for COVID research and charity funds from Intesa San Paolo. BoxesO_ST_ABSEvidence before this studyC_ST_ABSWe searched on Medline, EMBASE, and Pubmed for articles published from January 2020 to August 2020 using various combinations of the search terms "sex-difference", "gender" AND SARS-Cov-2, or COVID. Epidemiological studies indicate that men and women are similarly infected by COVID-19, but the outcome is less favorable in men, independently of age. Several studies also showed that patients with hypogonadism tend to be more severely affected. A prompt intervention directed toward the most fragile subjects with SARS-Cov2 infection is currently the only strategy to reduce mortality. glucocorticoid treatment has been found cost-effective in improving the outcome of severe cases. Clinical algorithms have been proposed, but little is known on the ability of genetic profiling to predict outcome and disclose novel therapeutic strategies. Added-value of this studyIn a cohort of 1178 men and women with COVID-19, we used a supervised machine learning approach on a synthetic representation of the uncovered variability of the human genome due to poly-amino acid repeats. Comparing the genotype of patients with extreme manifestations (severe vs. asymptomatic), we found that the poly-glutamine repeat of the androgen receptor (AR) gene is relevant for COVID-19 disease and defective AR signaling identifies an association between male sex, testosterone exposure, and COVID-19 outcome. Failure of the endocrine feedback to overcome AR signaling defect by increasing testosterone levels during the infection leads to the fact that polyQ becomes dominant to T levels for the clinical outcome. Implications of all the available evidenceWe identify the first genetic polymorphism predisposing some men to develop a more severe disease irrespectively of age. Based on this, we suggest that sizing the AR poly-glutamine repeat has important implications in the diagnostic pipeline of patients affected by life-threatening COVID-19 infection. Most importantly, our studies open to the potential of using testosterone as adjuvant therapy for severe COVID-19 patients having defective androgen signaling, defined by this study as [≥]23 PolyQ repeats and inappropriate levels of circulating androgens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...