Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 938, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296966

RESUMO

Electrochemical conversion of CO2 offers a sustainable route for producing fuels and chemicals. Pd-based catalysts are effective for converting CO2 into formate at low overpotentials and CO/H2 at high overpotentials, while undergoing poorly understood morphology and phase structure transformations under reaction conditions that impact performance. Herein, in-situ liquid-phase transmission electron microscopy and select area diffraction measurements are applied to track the morphology and Pd/PdHx phase interconversion under reaction conditions as a function of electrode potential. These studies identify the degradation mechanisms, including poisoning and physical structure changes, occurring in PdHx/Pd electrodes. Constant potential density functional theory calculations are used to probe the reaction mechanisms occurring on the PdHx structures observed under reaction conditions. Microkinetic modeling reveals that the intercalation of *H into Pd is essential for formate production. However, the change in electrochemical CO2 conversion selectivity away from formate and towards CO/H2 at increasing overpotentials is due to electrode potential dependent changes in the reaction energetics and not a consequence of morphology or phase structure changes.

2.
ACS Appl Mater Interfaces ; 15(40): 47649-47660, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782678

RESUMO

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

5.
Lab Chip ; 23(14): 3217-3225, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37341121

RESUMO

Liquid cell electron microscopy (LCEM) has long suffered from irreproducibility and its inability to confer high-quality images over a wide field of view. LCEM demands the encapsulation of the in-liquid sample between two ultrathin membranes (windows). In the vacuum environment of the electron microscope, the windows bulge, drastically reducing the achievable resolution and the usable viewing region. Herein, we introduce a shape-engineered nanofluidic cell architecture and an air-free drop-casting sample loading technique, which combined, provide robust bulgeless imaging conditions. We demonstrate the capabilities of our stationary approach through the study of in-liquid model samples and quantitative measurements of the liquid layer thickness. The presented LCEM method confers high throughput, lattice resolution across the complete viewing window, and sufficient contrast for the observation of unstained liposomes, paving the way to high-resolution movies of biospecimens in their near native environment.

6.
Chem Commun (Camb) ; 55(62): 9204-9207, 2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31309942

RESUMO

In order to gain better control over the functionality of Pd nanostructures used in several CO2-mitigating electrochemical energy conversion systems, it is imperative to underpin different nanoscale phenomena influencing their structural durability. Hitherto, such analyses have been carried out before/after an electrochemical treatment, but not during the entire process. Here, we demonstrate monitoring of morphological evolution in Pd nanostructures over the entire course of electrochemical treatment using a liquid-cell transmission electron microscope (TEM) set-up. Our findings reveal new insights into nanoparticle growth, dissolution, detachment, and aggregation that are relevant for the development of functional Pd nanomaterials.

7.
Micron ; 124: 102706, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31255883

RESUMO

Transmission electron microscopic (TEM) images of ion-milled bovid cortical bone cut approximately normal to the axes of fibrils show that mineral occurs in the form of plates surrounding and laying between circular or elliptical features about 50 nm in diameter. The classification of these features as either pores or collagen fibrils is highly debated. Electron energy loss spectroscopy (EELS) mapping of these features in ion milled sections shows that they are lacking significant amounts of mineral or collagen, although their appearance suggests that they are cross sections of collagen fibrils. However, analogous sections prepared using an ultramicrotome show that, while these circular features show reduced concentrations of calcium and phosphorus, some of them contain quantities of carbon and nitrogen in bonding states comparable to the composition of collagen. This work demonstrates that the observed circular features are sections of collagen fibrils, but that bombardment by argon ions during broad beam ion milling destroys the collagen and associated gap-zone mineral.


Assuntos
Colágeno/química , Osso Cortical/ultraestrutura , Minerais/análise , Espectroscopia de Perda de Energia de Elétrons , Animais , Bovinos , Osso Cortical/química , Tomografia com Microscopia Eletrônica , Feminino , Manejo de Espécimes
8.
Langmuir ; 35(4): 862-869, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30645125

RESUMO

Electrodeposition is widely used to fabricate tunable nanostructured materials in applications ranging from biosensing to energy conversion. A model based on 3D island growth is widely accepted in the explanation of the initial stages of nucleation and growth in electrodeposition. However, there are regions in the electrodeposition parameter space where this model becomes inapplicable. We use liquid cell transmission electron microscopy along with post situ scanning electron microscopy to investigate electrodeposition in this parameter space, focusing on the effect of the supporting electrolyte, and to shed light on the nucleation and growth of palladium. Using a collection of electron microscopy images and current time transients recorded during electrodeposition, we discover that electrochemical aggregative growth, rather than 3D island growth, best describes the electrodeposition process. We then use this model to explain the change in the morphology of palladium electrodeposits from spherical to open clusters with nonspherical morphology when HCl is added to the electrolyte solution. The enhanced understanding of the early stages of palladium nucleation and growth and the role of electrolyte in this process provides a systematic route toward the electrochemical fabrication of nanostructured materials.

9.
J Phys Chem B ; 109(10): 4350-6, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851501

RESUMO

The microstructure of LiAlD(4) with TiCl(3).1/3(AlCl(3)) and VCl(3) additives has been studied during different steps of the decomposition process using electron energy loss spectroscopy and energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope. Energy filtered transmission electron microscopy was used to show elemental distributions in the samples. The spatial distribution of the additives and the main elements within the alanate particles was examined with a resolution of a few nanometers. The analysis of the electron energy loss spectra reveals the chemical state of Al, O, and the additives. Ti and V do not appear to mix chemically with Al to a significant degree. V was found in high concentration in just a few particles, while Ti is more uniformly distributed. All the samples showed evidence of oxidation despite procedures being adopted to avoid exposing the material to air. The additives are oxidized in all the samples, and Al(2)O(3) forms a thin layer at the surface of the particles. This paper gives a comparison between samples at different stages of the decomposition process using different additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...