Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5182, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626027

RESUMO

The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.

2.
Adv Mater ; 35(2): e2206997, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36440651

RESUMO

One central challenge in understanding phonon thermal transport is a lack of experimental tools to investigate frequency-resolved phonon transport. Although recent advances in computation lead to frequency-resolved information, it is hindered by unknown defects in bulk regions and at interfaces. Here, a framework that can uncover microscopic phonon transport information in heterostructures is presented, integrating state-of-the-art ultrafast electron diffraction (UED) with advanced scientific machine learning (SciML). Taking advantage of the dual temporal and reciprocal-space resolution in UED, and the ability of SciML to solve inverse problems involving O ( 10 3 ) $\mathcal{O}({10^3})$ coupled Boltzmann transport equations, the frequency-dependent interfacial transmittance and frequency-dependent relaxation times of the heterostructure from the diffraction patterns are reliably recovered. The framework is applied to experimental Au/Si UED data, and a transport pattern beyond the diffuse mismatch model is revealed, which further enables a direct reconstruction of real-space, real-time, frequency-resolved phonon dynamics across the interface. The work provides a new pathway to probe interfacial phonon transport mechanisms with unprecedented details.

3.
Adv Mater ; 34(49): e2204113, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36193763

RESUMO

Topological materials discovery has emerged as an important frontier in condensed matter physics. While theoretical classification frameworks have been used to identify thousands of candidate topological materials, experimental determination of materials' topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique sensitive to atoms' local symmetry and chemical bonding, which are intimately linked to band topology by the theory of topological quantum chemistry (TQC). Moreover, as a local structural probe, XAS is known to have high quantitative agreement between experiment and calculation, suggesting that insights from computational spectra can effectively inform experiments. In this work, computed X-ray absorption near-edge structure (XANES) spectra of more than 10 000 inorganic materials to train a neural network (NN) classifier that predicts topological class directly from XANES signatures, achieving F1 scores of 89% and 93% for topological and trivial classes, respectively is leveraged. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine-learning-augmented XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials, and may further inform field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.

4.
iScience ; 25(10): 105192, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36262309

RESUMO

The determination of magnetic structure poses a long-standing challenge in condensed matter physics and materials science. Experimental techniques such as neutron diffraction are resource-limited and require complex structure refinement protocols, while computational approaches such as first-principles density functional theory (DFT) need additional semi-empirical correction, and reliable prediction is still largely limited to collinear magnetism. Here, we present a machine learning model that aims to classify the magnetic structure by inputting atomic coordinates containing transition metal and rare earth elements. By building a Euclidean equivariant neural network that preserves the crystallographic symmetry, the magnetic structure (ferromagnetic, antiferromagnetic, and non-magnetic) and magnetic propagation vector (zero or non-zero) can be predicted with an average accuracy of 77.8% and 73.6%. In particular, a 91% accuracy is reached when predicting no magnetic ordering even if the structure contains magnetic element(s). Our work represents one step forward to solving the grand challenge of full magnetic structure determination.

5.
Nano Lett ; 21(17): 7419-7425, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314183

RESUMO

Many-body localization (MBL) has attracted significant attention because of its immunity to thermalization, role in logarithmic entanglement entropy growth, and opportunities to reach exotic quantum orders. However, experimental realization of MBL in solid-state systems has remained challenging. Here, we report evidence of a possible phonon MBL phase in disordered GaAs/AlAs superlattices. Through grazing-incidence inelastic X-ray scattering, we observe a strong deviation of the phonon population from equilibrium in samples doped with ErAs nanodots at low temperature, signaling a departure from thermalization. This behavior occurs within finite phonon energy and wavevector windows, suggesting a localization-thermalization crossover. We support our observation by proposing a theoretical model for the effective phonon Hamiltonian in disordered superlattices, and showing that it can be mapped exactly to a disordered 1D Bose-Hubbard model with a known MBL phase. Our work provides momentum-resolved experimental evidence of phonon localization, extending the scope of MBL to disordered solid-state systems.


Assuntos
Modelos Teóricos , Fônons
6.
Adv Sci (Weinh) ; 8(12): e2004214, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165895

RESUMO

Machine learning has demonstrated great power in materials design, discovery, and property prediction. However, despite the success of machine learning in predicting discrete properties, challenges remain for continuous property prediction. The challenge is aggravated in crystalline solids due to crystallographic symmetry considerations and data scarcity. Here, the direct prediction of phonon density-of-states (DOS) is demonstrated using only atomic species and positions as input. Euclidean neural networks are applied, which by construction are equivariant to 3D rotations, translations, and inversion and thereby capture full crystal symmetry, and achieve high-quality prediction using a small training set of ≈103 examples with over 64 atom types. The predictive model reproduces key features of experimental data and even generalizes to materials with unseen elements, and is naturally suited to efficiently predict alloy systems without additional computational cost. The potential of the network is demonstrated by predicting a broad number of high phononic specific heat capacity materials. The work indicates an efficient approach to explore materials' phonon structure, and can further enable rapid screening for high-performance thermal storage materials and phonon-mediated superconductors.

7.
Nat Commun ; 11(1): 6167, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268778

RESUMO

Thermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower [Formula: see text] and giant power factor [Formula: see text] are observed at ~40 K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.

8.
Phys Rev Lett ; 124(23): 236401, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603171

RESUMO

The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition, and polaron effects in semiconductors, lifetime of hot carriers, transition temperature in BCS superconductors, and even spin relaxation in diamond nitrogen-vacancy centers for quantum information processing. However, due to the weak EPI strength, most phenomena have focused on electronic properties rather than on phonon properties. One prominent exception is the Kohn anomaly, where phonon softening can emerge when the phonon wave vector nests the Fermi surface of metals. Here we report a new class of Kohn anomaly in a topological Weyl semimetal (WSM), predicted by field-theoretical calculations, and experimentally observed through inelastic x-ray and neutron scattering on WSM tantalum phosphide. Compared to the conventional Kohn anomaly, the Fermi surface in a WSM exhibits multiple topological singularities of Weyl nodes, leading to a distinct nesting condition with chiral selection, a power-law divergence, and non-negligible dynamical effects. Our work brings the concept of the Kohn anomaly into WSMs and sheds light on elucidating the EPI mechanism in emergent topological materials.

9.
J Am Chem Soc ; 137(18): 6026-33, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25836760

RESUMO

Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer-inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...