Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Semin Liver Dis ; 43(4): 429-445, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38101419

RESUMO

Acute-on-chronic liver failure (ACLF), a clinical syndrome that can develop at any stage in the progression of cirrhotic liver disease, is characterized by an acute decompensation in liver function with associated multiorgan failure and high short-term mortality. Current evidence points to ACLF being reversible, particularly in those at the lower end of the severity spectrum. However, there are no specific treatments for ACLF, and overall outcomes remain poor. Expedited liver transplantation as a treatment option is limited by organ shortage and a lack of priority allocation for this indication. Other options are therefore urgently needed, and our improved understanding of the condition has led to significant efforts to develop novel therapies. In conclusion, this review aims to summarize the current understanding of the pathophysiological processes involved in the onset, progression, and recovery of ACLF and discuss novel therapies under development.


Assuntos
Insuficiência Hepática Crônica Agudizada , Transplante de Fígado , Humanos , Insuficiência Hepática Crônica Agudizada/terapia , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Insuficiência de Múltiplos Órgãos/complicações , Síndrome , Prognóstico
2.
J Hepatol ; 79(1): 79-92, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268222

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterized by severe systemic inflammation, multi-organ failure and high mortality rates. Its treatment is an urgent unmet need. DIALIVE is a novel liver dialysis device that aims to exchange dysfunctional albumin and remove damage- and pathogen-associated molecular patterns. This first-in-man randomized-controlled trial was performed with the primary aim of assessing the safety of DIALIVE in patients with ACLF, with secondary aims of evaluating its clinical effects, device performance and effect on pathophysiologically relevant biomarkers. METHODS: Thirty-two patients with alcohol-related ACLF were included. Patients were treated with DIALIVE for up to 5 days and end points were assessed at Day 10. Safety was assessed in all patients (n = 32). The secondary aims were assessed in a pre-specified subgroup that had at least three treatment sessions with DIALIVE (n = 30). RESULTS: There were no significant differences in 28-day mortality or occurrence of serious adverse events between the groups. Significant reduction in the severity of endotoxemia and improvement in albumin function was observed in the DIALIVE group, which translated into a significant reduction in the CLIF-C (Chronic Liver Failure consortium) organ failure (p = 0.018) and CLIF-C ACLF scores (p = 0.042) at Day 10. Time to resolution of ACLF was significantly faster in DIALIVE group (p = 0.036). Biomarkers of systemic inflammation such as IL-8 (p = 0.006), cell death [cytokeratin-18: M30 (p = 0.005) and M65 (p = 0.029)], endothelial function [asymmetric dimethylarginine (p = 0.002)] and, ligands for Toll-like receptor 4 (p = 0.030) and inflammasome (p = 0.002) improved significantly in the DIALIVE group. CONCLUSIONS: These data indicate that DIALIVE appears to be safe and impacts positively on prognostic scores and pathophysiologically relevant biomarkers in patients with ACLF. Larger, adequately powered studies are warranted to further confirm its safety and efficacy. IMPACT AND IMPLICATIONS: This is the first-in-man clinical trial which tested DIALIVE, a novel liver dialysis device for the treatment of cirrhosis and acute-on-chronic liver failure, a condition associated with severe inflammation, organ failures and a high risk of death. The study met the primary endpoint, confirming the safety of the DIALIVE system. Additionally, DIALIVE reduced inflammation and improved clinical parameters. However, it did not reduce mortality in this small study and further larger clinical trials are required to re-confirm its safety and to evaluate efficacy. CLINICAL TRIAL NUMBER: NCT03065699.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Humanos , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/complicações , Padrão de Cuidado , Prognóstico , Diálise Renal/efeitos adversos , Cirrose Hepática/complicações , Biomarcadores , Inflamação/complicações
3.
J Hepatol ; 77(5): 1325-1338, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843375

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterised by high short-term mortality, systemic inflammation, and failure of hepatic regeneration. Its treatment is a major unmet medical need. This study was conducted to explore whether combining TAK-242, a Toll-like receptor-4 (TLR4) antagonist, with granulocyte-colony stimulating factor (G-CSF), could reduce inflammation whilst enhancing liver regeneration. METHODS: Two mouse models of ACLF were investigated. Chronic liver injury was induced by carbon tetrachloride; lipopolysaccharide (LPS) or galactosamine (GalN) were then administered as extrahepatic or hepatic insults, respectively. G-CSF and/or TAK-242 were administered daily. Treatment durations were 24 hours and 5 days in the LPS model and 48 hours in the GalN model. RESULTS: In a mouse model of LPS-induced ACLF, treatment with G-CSF was associated with significant mortality (66% after 48 hours vs. 0% without G-CSF). Addition of TAK-242 to G-CSF abrogated mortality (0%) and significantly reduced liver cell death, macrophage infiltration and inflammation. In the GalN model, both G-CSF and TAK-242, when used individually, reduced liver injury but their combination was significantly more effective. G-CSF treatment, with or without TAK-242, was associated with activation of the pro-regenerative and anti-apoptotic STAT3 pathway. LPS-driven ACLF was characterised by p21 overexpression, which is indicative of hepatic senescence and inhibition of hepatocyte regeneration. While TAK-242 treatment mitigated the effect on senescence, G-CSF, when co-administered with TAK-242, resulted in a significant increase in markers of hepatocyte regeneration. CONCLUSION: The combination of TAK-242 and G-CSF inhibits inflammation, promotes hepatic regeneration and prevents mortality in models of ACLF; thus, this combination could be a potential treatment option for ACLF. LAY SUMMARY: Acute-on-chronic liver failure is associated with severe liver inflammation and poor short-term survival. Therefore, effective treatments are urgently needed. Herein, we have shown, using mouse models, that the combination of granulocyte-colony stimulating factor (which can promote liver regeneration) and TAK-242 (which inhibits a receptor that plays a key role in inflammation) could be effective for the treatment of acute-on-chronic liver failure.


Assuntos
Insuficiência Hepática Crônica Agudizada , Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Animais , Tetracloreto de Carbono , Modelos Animais de Doenças , Galactosamina , Fator Estimulador de Colônias de Granulócitos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Camundongos , Sulfonamidas , Receptor 4 Toll-Like/metabolismo
6.
Sci Rep ; 12(1): 3418, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232986

RESUMO

The main aim was to evaluate changes in urea cycle enzymes in NAFLD patients and in two preclinical animal models mimicking this entity. Seventeen liver specimens from NAFLD patients were included for immunohistochemistry and gene expression analyses. Three-hundred-and-eighty-two biopsy-proven NAFLD patients were genotyped for rs1047891, a functional variant located in carbamoyl phosphate synthetase-1 (CPS1) gene. Two preclinical models were employed to analyse CPS1 by immunohistochemistry, a choline deficient high-fat diet model (CDA-HFD) and a high fat diet LDLr knockout model (LDLr -/-). A significant downregulation in mRNA was observed in CPS1 and ornithine transcarbamylase (OTC1) in simple steatosis and NASH-fibrosis patients versus controls. Further, age, obesity (BMI > 30 kg/m2), diabetes mellitus and ALT were found to be risk factors whereas A-allele from CPS1 was a protective factor from liver fibrosis. CPS1 hepatic expression was diminished in parallel with the increase of fibrosis, and its levels reverted up to normality after changing diet in CDA-HFD mice. In conclusion, liver fibrosis and steatosis were associated with a reduction in both gene and protein expression patterns of mitochondrial urea cycle enzymes. A-allele from a variant on CPS1 may protect from fibrosis development. CPS1 expression is restored in a preclinical model when the main trigger of the liver damage disappears.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ureia/metabolismo
7.
Dig Dis Sci ; 67(5): 1806-1821, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33939146

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are key players in innate immunity and modulation of TLR signaling has been demonstrated to profoundly affect proliferation and growth in different types of cancer. However, the role of TLRs in human intrahepatic cholangiocarcinoma (ICC) pathogenesis remains largely unexplored. AIMS: We set out to determine if TLRs play any role in ICCs which could potentially make them useful treatment targets. METHODS: Tissue microarrays containing samples from 9 human ICCs and normal livers were examined immunohistochemically for TLR4, TLR7, and TLR9 expression. Proliferation of human ICC cell line HuCCT1 was measured by MTS assay following treatment with CpG-ODN (TLR9 agonist), imiquimod (TLR7 agonist), chloroquine (TLR7 and TLR9 inhibitor) and IRS-954 (TLR7 and TLR9 antagonist). The in vivo effects of CQ and IRS-954 on tumor development were also examined in a NOD-SCID mouse xenograft model of human ICC. RESULTS: TLR4 was expressed in all normal human bile duct epithelium but absent in the majority (60%) of ICCs. TLR7 and TLR9 were expressed in 80% of human ICCs. However, TLR7 was absent in all cases of normal human bile duct epithelium and only one was TLR9 positive. HuCCT1 cell proliferation in vitro significantly increased following IMQ or CpG-ODN treatment (P < 0.03 and P < 0.002, respectively) but decreased with CQ (P < 0.02). In the mouse xenograft model there was significant reduction in size of tumors from CQ and IRS-954 treated mice compared to untreated controls. CONCLUSION: TLR7 and TLR9 should be further explored for their potential as actionable targets in the treatment of ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/metabolismo , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor 4 Toll-Like , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Receptores Toll-Like/agonistas
8.
Cell Death Dis ; 13(1): 5, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921136

RESUMO

Acute-on-chronic liver failure (ACLF) is characterized predominantly by non-apoptotic forms of hepatocyte cell death. Necroptosis is a form of programmed lytic cell death in which receptor interacting protein kinase (RIPK) 1, RIPK3 and phosphorylated mixed lineage kinase domain-like (pMLKL) are key components. This study was performed to determine the role of RIPK1 mediated cell death in ACLF. RIPK3 plasma levels and hepatic expression of RIPK1, RIPK3, and pMLKL were measured in healthy volunteers, stable patients with cirrhosis, and in hospitalized cirrhotic patients with acutely decompensated cirrhosis, with and without ACLF (AD). The role of necroptosis in ACLF was studied in two animal models of ACLF using inhibitors of RIPK1, necrostatin-1 (NEC-1) and SML2100 (RIPA56). Plasma RIPK3 levels predicted the risk of 28- and 90-day mortality (AUROC, 0.653 (95%CI 0.530-0.776), 0.696 (95%CI 0.593-0.799)] and also the progression of patients from no ACLF to ACLF [0.744 (95%CI 0.593-0.895)] and the results were validated in a 2nd patient cohort. This pattern was replicated in a rodent model of ACLF that was induced by administration of lipopolysaccharide (LPS) to bile-duct ligated rats and carbon tetrachloride-induced fibrosis mice administered galactosamine (CCL4/GalN). Suppression of caspase-8 activity in ACLF rodent model was observed suggesting a switch from caspase-dependent cell death to necroptosis. NEC-1 treatment prior to administration of LPS significantly reduced the severity of ACLF manifested by reduced liver, kidney, and brain injury mirrored by reduced hepatic and renal cell death. Similar hepato-protective effects were observed with RIPA56 in a murine model of ACLF induced by CCL4/GalN. These data demonstrate for the first time the importance of RIPK1 mediated cell death in human and rodent ACLF. Inhibition of RIPK1 is a potential novel therapeutic approach to prevent progression of susceptible patients from no ACLF to ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada/genética , Morte Celular/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Insuficiência Hepática Crônica Agudizada/mortalidade , Idoso , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida
9.
JHEP Rep ; 3(6): 100355, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34805815

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterised by organ failure(s), high short-term mortality, and, pathophysiologically, deranged inflammatory responses. The extracellular matrix (ECM) is critically involved in regulating the inflammatory response. This study aimed to determine alterations in biomarkers of ECM turnover in ACLF and their association with inflammation, organ failures, and mortality. METHODS: We studied 283 patients with cirrhosis admitted for acute decompensation (AD) with or without ACLF, 64 patients with stable cirrhosis, and 30 healthy controls. A validation cohort (25 ACLF, 9 healthy controls) was included. Plasma PRO-C3, PRO-C4, PRO-C5, PRO-C6, and PRO-C8 (i.e. collagen type III-VI and VIII formation) and C4M and C6M (i.e. collagen type IV and VI degradation) were measured. Immunohistochemistry of PRO-C6 was performed on liver biopsies (AD [n = 7], ACLF [n = 5]). A competing-risk regression analysis was performed to explore the prognostic value of biomarkers of ECM turnover with 28- and 90-day mortality. RESULTS: PRO-C3 and PRO-C6 were increased in ACLF compared to AD (p = 0.089 and p <0.001, respectively), whereas collagen degradation markers C4M and C6M were similar. Both PRO-C3 and PRO-C6 were strongly associated with liver function and inflammatory markers. Only PRO-C6 was associated with extrahepatic organ failures and 28- and 90-day mortality (hazard ratio [HR; on log-scale] 6.168, 95% CI 2.366-16.080, p <0.001, and 3.495, 95% CI 1.509-8.093, p = 0.003, respectively). These findings were consistent in the validation cohort. High PRO-C6 expression was observed in liver biopsies of patients with ACLF. CONCLUSIONS: This study shows, for the first time, evidence of severe net interstitial collagen deposition in ACLF and makes the novel observation of the association between PRO-C6 and (extrahepatic) organ failures and mortality. Further studies are needed to define the pathogenic significance of these observations. LAY SUMMARY: This study describes a disrupted turnover of collagen type III and VI in Acute-on-chronic liver failure (ACLF). Plasma biomarkers of these collagens (PRO-C3 and PRO-C6) are associated with the severity of liver dysfunction and inflammation. PRO-C6, also known as the hormone endotrophin, has also been found to be associated with multi-organ failure and prognosis in acute decompensation and ACLF.

10.
Cells ; 9(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429478

RESUMO

In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation.


Assuntos
Antioxidantes/metabolismo , Ceramidas/farmacologia , Metabolismo Energético , Homeostase , Lipidômica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colina , Dieta , Diglicerídeos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Comportamento Alimentar , Células-Tronco Hematopoéticas/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Lipossomos , Masculino , Metionina/deficiência , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatidilcolinas/metabolismo , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Sci Rep ; 10(1): 389, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31942020

RESUMO

The lipopolysaccharide (LPS)- toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure.


Assuntos
Insuficiência Hepática Crônica Agudizada/prevenção & controle , Fosfatase Alcalina/administração & dosagem , Monócitos/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Insuficiência Hepática Crônica Agudizada/induzido quimicamente , Insuficiência Hepática Crônica Agudizada/metabolismo , Insuficiência Hepática Crônica Agudizada/patologia , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Monócitos/metabolismo , Ratos , Ratos Sprague-Dawley
12.
J Hepatol ; 73(1): 102-112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31987990

RESUMO

BACKGROUND & AIMS: Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Herein, we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. METHODS: Circulating TLR4 ligands and hepatic TLR4 expression were measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo (10 mg/kg intraperitoneally) in rodent models of ACLF (bile duct ligation + lipopolysaccharide [LPS]; carbon tetrachloride + LPS) and ALF (galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5). The in vivo therapeutic effect was assessed by coma-free survival, organ injury and cytokine release and in vitro by measuring IL-6, IL-1ß or cell injury (TUNEL), respectively. RESULTS: In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p <0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS-induced cytokine secretion and cell death (p = 0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma-free survival, reduced the degree of hepatocyte cell death in the liver (p <0.001) and kidneys (p = 0.048) and reduced circulating cytokine levels (IL-1ß, p <0.001). In a rodent model of ALF, TAK-242 prevented organ injury (p <0.001) and systemic inflammation (IL-1ß, p <0.001). CONCLUSION: This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF; its inhibition reduces the severity of organ injury and improves outcome. TAK-242 may be of therapeutic relevance in patients with liver failure. LAY SUMMARY: Toll-like receptor 4 (or TLR4) mediates endotoxin-induced tissue injury in liver failure and cirrhosis. This receptor sensitizes cells to endotoxins, which are produced by gram-negative bacteria. Thus, inhibiting TLR4 signaling with an inhibitor (TAK-242) ameliorates organ injury and systemic inflammation in rodent models of acute and acute-on-chronic liver failure.


Assuntos
Insuficiência Hepática Crônica Agudizada , Cirrose Hepática , Falência Hepática Aguda , Sulfonamidas/farmacologia , Receptor 4 Toll-Like , Insuficiência Hepática Crônica Agudizada/etiologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Insuficiência Hepática Crônica Agudizada/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Interleucina-1beta/análise , Ligantes , Cirrose Hepática/sangue , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/prevenção & controle , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Resultado do Tratamento
13.
Hepatology ; 71(3): 874-892, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31378982

RESUMO

BACKGROUND AND AIMS: In nonalcoholic fatty liver disease (NAFLD), fibrosis is the most important factor contributing to NAFLD-associated morbidity and mortality. Prevention of progression and reduction in fibrosis are the main aims of treatment. Even in early stages of NAFLD, hepatic and systemic hyperammonemia is evident. This is due to reduced urea synthesis; and as ammonia is known to activate hepatic stellate cells, we hypothesized that ammonia may be involved in the progression of fibrosis in NAFLD. APPROACH AND RESULTS: In a high-fat, high-cholesterol diet-induced rodent model of NAFLD, we observed a progressive stepwise reduction in the expression and activity of urea cycle enzymes resulting in hyperammonemia, evidence of hepatic stellate cell activation, and progressive fibrosis. In primary, cultured hepatocytes and precision-cut liver slices we demonstrated increased gene expression of profibrogenic markers after lipid and/or ammonia exposure. Lowering of ammonia with the ammonia scavenger ornithine phenylacetate prevented hepatocyte cell death and significantly reduced the development of fibrosis both in vitro in the liver slices and in vivo in a rodent model. The prevention of fibrosis in the rodent model was associated with restoration of urea cycle enzyme activity and function, reduced hepatic ammonia, and markers of inflammation. CONCLUSIONS: The results of this study suggest that hepatic steatosis results in hyperammonemia, which is associated with progression of hepatic fibrosis. Reduction of ammonia levels prevented progression of fibrosis, providing a potential treatment for NAFLD.


Assuntos
Amônia/metabolismo , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley , Distúrbios Congênitos do Ciclo da Ureia/etiologia
14.
J Hepatol ; 69(4): 905-915, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29981428

RESUMO

BACKGROUND & AIMS: In non-alcoholic steatohepatitis (NASH), the function of urea cycle enzymes (UCEs) may be affected, resulting in hyperammonemia and the risk of disease progression. We aimed to determine whether the expression and function of UCEs are altered in an animal model of NASH and in patients with non-alcoholic fatty liver disease (NAFLD), and whether this process is reversible. METHODS: Rats were first fed a high-fat, high-cholesterol diet for 10 months to induce NASH, before being switched onto a normal chow diet to recover. In humans, we obtained liver biopsies from 20 patients with steatosis and 15 with NASH. Primary rat hepatocytes were isolated and cultured with free fatty acids. We measured the gene and protein expression of ornithine transcarbamylase (OTC) and carbamoylphosphate synthetase (CPS1), as well as OTC activity, and ammonia concentrations. Moreover, we assessed the promoter methylation status of OTC and CPS1 in rats, humans and steatotic hepatocytes. RESULTS: In NASH animals, gene and protein expression of OTC and CPS1, and the activity of OTC, were reversibly reduced. Hypermethylation of Otc promoter genes was also observed. Additionally, in patients with NAFLD, OTC enzyme concentration and activity were reduced and ammonia concentrations were increased, which was further exacerbated in those with NASH. Furthermore, OTC and CPS1 promoter regions were hypermethylated. In primary hepatocytes, induction of steatosis was associated with Otc promoter hypermethylation, a reduction in the gene expression of Otc and Cps1, and an increase in ammonia concentration in the supernatant. CONCLUSION: NASH is associated with a reduction in the gene and protein expression, and activity, of UCEs. This results in hyperammonemia, possibly through hypermethylation of UCE genes and impairment of urea synthesis. Our investigations are the first to describe a link between NASH, the function of UCEs, and hyperammonemia, providing a novel therapeutic target. LAY SUMMARY: In patients with fatty liver disease, the enzymes that convert nitrogen waste into urea may be affected, leading to the accumulation of ammonia, which is toxic. This accumulation of ammonia can lead to scar tissue development, increasing the risk of disease progression. In this study, we show that fat accumulation in the liver produces a reversible reduction in the function of the enzymes that are involved in detoxification of ammonia. These data provide potential new targets for the treatment of fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Ureia/metabolismo , Adulto , Idoso , Amônia/metabolismo , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Células Cultivadas , Metilação de DNA , Feminino , Glutamato-Amônia Ligase/análise , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Ornitina Carbamoiltransferase/genética , Regiões Promotoras Genéticas , Ratos , Ratos Wistar
15.
Med Hypotheses ; 113: 91-97, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29523305

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from steatosis, through non-alcoholic steatohepatitis (NASH) to cirrhosis. The development of fibrosis is the most important factor contributing to NASH-associated morbidity and mortality. Hepatic stellate cells (HSCs) are responsible for extracellular matrix deposition in conditions of frank hepatocellular injury and are key cells involved in the development of fibrosis. In experimental models and patients with NASH, urea cycle enzyme gene and protein expression is reduced resulting in functional reduction in the in vivo capacity for ureagenesis and subsequent hyperammonemia at a pre-cirrhotic stage. Ammonia has been shown to activate HSCs in vivo and in vitro. Hyperammonemia in the context of NASH may therefore favour the progression of fibrosis and the disease. We therefore hypothesise that ammonia is a potential target for prevention of fibrosis progression of patients with NASH.


Assuntos
Amônia/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ureia/química , Amônia/metabolismo , Animais , Biópsia , Modelos Animais de Doenças , Progressão da Doença , Fibrose/prevenção & controle , Fibrose/terapia , Células Estreladas do Fígado/citologia , Humanos , Fígado/metabolismo , Modelos Teóricos , Hepatopatia Gordurosa não Alcoólica/metabolismo
16.
Hepatology ; 67(3): 989-1002, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29023872

RESUMO

The aims of this study were to determine the role of cell death in patients with cirrhosis and acute decompensation (AD) and acute on chronic liver failure (ACLF) using plasma-based biomarkers. The patients studied were part of the CANONIC (CLIF Acute-on-Chronic Liver Failure in Cirrhosis) study (N = 337; AD, 258; ACLF, 79); additional cohorts included healthy volunteers, stable patients with cirrhosis, and a group of 16 AD patients for histological studies. Caspase-cleaved keratin 18 (cK18) and keratin 18 (K18), which reflect apoptotic and total cell death, respectively, and cK18:K18 ratio (apoptotic index) were measured in plasma by enzyme-linked immunosorbent assay. The concentrations of cK18 and K18 increased and the cK18:K18 ratio decreased with increasing severity of AD and ACLF (P < 0.001, respectively). Alcohol etiology, no previous decompensation, and alcohol abuse were associated with increased cell death markers whereas underlying infection was not. Close correlation was observed between the cell death markers and, markers of systemic inflammation, hepatic failure, alanine aminotransferase, and bilirubin, but not with markers of extrahepatic organ injury. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining confirmed evidence of greater hepatic cell death in patients with ACLF as opposed to AD. Inclusion of cK18 and K18 improved the performance of the CLIF-C AD score in prediction of progression from AD to ACLF (P < 0.05). CONCLUSION: Cell death, likely hepatic, is an important feature of AD and ACLF and its magnitude correlates with clinical severity. Nonapoptotic forms of cell death predominate with increasing severity of AD and ACLF. The data suggests that ACLF is a heterogeneous entity and shows that the importance of cell death in its pathophysiology is dependent on predisposing factors, precipitating illness, response to injury, and type of organ failure. (Hepatology 2018;67:989-1002).


Assuntos
Insuficiência Hepática Crônica Agudizada/fisiopatologia , Biomarcadores/sangue , Morte Celular , Queratina-18/sangue , Cirrose Hepática/fisiopatologia , Insuficiência Hepática Crônica Agudizada/sangue , Insuficiência Hepática Crônica Agudizada/complicações , Adulto , Idoso , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Análise de Sobrevida
17.
Free Radic Biol Med ; 102: 162-173, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890721

RESUMO

AIMS: Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. RESULTS: Primary human HSC were exposed to 15-E2-IsoLG for up to 48h. Exposure to 5µM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. INNOVATION: This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. CONCLUSIONS: IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.


Assuntos
Células Estreladas do Fígado/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Cirrose Hepática/metabolismo , Prostaglandinas E/administração & dosagem , Aldeídos/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prostaglandinas E/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Metab Brain Dis ; 31(6): 1259-1267, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696270

RESUMO

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which frequently accompanies acute or chronic liver disease. It is characterized by a variety of symptoms of different severity such as cognitive deficits and impaired motor functions. Currently, HE is seen as a consequence of a low grade cerebral oedema associated with the formation of cerebral oxidative stress and deranged cerebral oscillatory networks. However, the pathogenesis of HE is still incompletely understood as liver dysfunction triggers exceptionally complex metabolic derangements in the body which need to be investigated by appropriate technologies. This review summarizes technological approaches presented at the ISHEN conference 2014 in London which may help to gain new insights into the pathogenesis of HE. Dynamic in vivo 13C nuclear magnetic resonance spectroscopy was performed to analyse effects of chronic liver failure in rats on brain energy metabolism. By using a genomics approach, microRNA expression changes were identified in plasma of animals with acute liver failure which may be involved in interorgan interactions and which may serve as organ-specific biomarkers for tissue damage during acute liver failure. Genomics were also applied to analyse glutaminase gene polymorphisms in patients with liver cirrhosis indicating that haplotype-dependent glutaminase activity is an important pathogenic factor in HE. Metabonomics represents a promising approach to better understand HE, by capturing the systems level metabolic changes associated with disease in individuals, and enabling monitoring of metabolic phenotypes in real time, over a time course and in response to treatment, to better inform clinical decision making. Targeted fluxomics allow the determination of metabolic reaction rates thereby discriminating metabolite level changes in HE in terms of production, consumption and clearance.


Assuntos
Encefalopatia Hepática/diagnóstico , Encefalopatia Hepática/genética , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Animais , Encefalopatia Hepática/sangue , Humanos , Metabolômica/tendências , MicroRNAs/sangue , MicroRNAs/genética
19.
J Hepatol ; 64(4): 823-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26654994

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS: Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 µM, 100 µM, 300 µM) over 24-72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS: Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rß. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 µmol/L±43.65 vs. BDL+OP 149.27 µmol/L±51.1, p<0.05) and portal pressure (BDL 14±0.6 vs. BDL+OP 11±0.3 mmHg, p<0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS: The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension.


Assuntos
Amônia/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Hipertensão Portal/tratamento farmacológico , Amônia/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/patologia , Células Estreladas do Fígado/patologia , Humanos , Masculino , Ornitina/análogos & derivados , Ornitina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
20.
PLoS One ; 10(5): e0128076, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018205

RESUMO

Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002). Conclusions: MicroRNAs were released passively into the circulation in response to acetaminophen-induced cellular damage. A significant increase in global microRNA was detectable prior to significant increases in miR122, miR192 and miR124-1, which were associated with clinical evidence of liver, kidney and brain injury respectively.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/sangue , Falência Hepática Aguda/sangue , Falência Hepática Aguda/induzido quimicamente , MicroRNAs/sangue , Animais , Modelos Animais de Doenças , Pressão Intracraniana/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...