Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674783

RESUMO

The ubiquitin pathway, one of the main actors regulating cell signaling processes and cellular protein homeostasis, is directly involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). We first analyzed, by a next-generation sequencing (NGS) strategy, a series of genes of the ubiquitin pathway in two cohorts of familial and sporadic ALS patients comprising 176 ALS patients. We identified several pathogenic variants in different genes of this ubiquitin pathway already described in ALS, such as FUS, CCNF and UBQLN2. Other variants of interest were discovered in new genes studied in this disease, in particular in the HECW1 gene. We have shown that the HECT E3 ligase called NEDL1, encoded by the HECW1 gene, is expressed in neurons, mainly in their somas. Its overexpression is associated with increased cell death in vitro and, very interestingly, with the cytoplasmic mislocalization of TDP-43, a major protein involved in ALS. These results give new support for the role of the ubiquitin pathway in ALS, and suggest further studies of the HECW1 gene and its protein NEDL1 in the pathophysiology of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Neurônios/metabolismo , Transdução de Sinais/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Ther Drug Monit ; 34(3): 289-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22585184

RESUMO

BACKGROUND: Glomerular filtration rate (GFR) measurement is a major issue in kidney transplant recipients for clinicians. GFR can be determined by estimating the plasma clearance of iohexol, a nonradiolabeled compound. For practical and convenient application for patients and caregivers, it is important that a minimal number of samples are drawn. The aim of this study was to develop and validate a Bayesian model with fewer samples for reliable prediction of GFR in kidney transplant recipients. METHODS: Iohexol plasma concentration-time curves from 95 patients were divided into an index (n = 63) and a validation set (n = 32). Samples (n = 4-6 per patient) were obtained during the elimination phase, that is, between 120 and 270 minutes. Individual reference values of iohexol clearance (CL(iohexol)) were calculated from k (elimination slope) and V (volume of distribution from intercept). Individual CL(iohexol) values were then introduced into the Bröchner-Mortensen equation to obtain the GFR (reference value). A population pharmacokinetic model was developed from the index set and validated using standard methods. For the validation set, we tested various combinations of 1, 2, or 3 sampling time to estimate CL(iohexol). According to the different combinations tested, a maximum a posteriori Bayesian estimation of CL(iohexol) was obtained from population parameters. Individual estimates of GFR were compared with individual reference values through analysis of bias and precision. A capability analysis allowed us to determine the best sampling strategy for Bayesian estimation. RESULTS: A 1-compartment model best described our data. Covariate analysis showed that uremia, serum creatinine, and age were significantly associated with k(e), and weight with V. The strategy, including samples drawn at 120 and 270 minutes, allowed accurate prediction of GFR (mean bias: -3.71%, mean imprecision: 7.77%). With this strategy, about 20% of individual predictions were outside the bounds of acceptance set at ± 10%, and about 6% if the bounds of acceptance were set at ± 15%. CONCLUSIONS: This Bayesian approach can help to reduce the number of samples required to calculate GFR using Bröchner-Mortensen formula with good accuracy.


Assuntos
Meios de Contraste/metabolismo , Iohexol/metabolismo , Transplante de Rim/fisiologia , Rim/metabolismo , Adulto , Idoso , Teorema de Bayes , Feminino , Seguimentos , Taxa de Filtração Glomerular/fisiologia , Humanos , Transplante de Rim/métodos , Masculino , Taxa de Depuração Metabólica/fisiologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...