Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063282

RESUMO

This literature review explores cutting-edge microencapsulation techniques designed to enhance the antimicrobial efficacy of essential oils in dairy products. As consumer demand for natural preservatives rises, understanding the latest advancements in microencapsulation becomes crucial for improving the shelf life and safety of these products. The bibliometric analysis utilized in this review highlighted a large number of documents published on this topic in relation to the following keywords: essential oils, AND antimicrobials, AND dairy products, OR microencapsulation. The documents published in the last 11 years, between 2013 and 2023, showed a diversity of authors and countries researching this topic and the keywords commonly used. However, in the literature consulted, no study was identified that was based on bibliometric analysis and that critically evaluated the microencapsulation of essential oils and their antimicrobial potential in dairy products. This review synthesizes findings from diverse studies, shedding light on the various encapsulation methods employed and their impact on preserving the quality of dairy goods. Additionally, it discusses the potential applications and challenges associated with implementation in the dairy industry. This comprehensive analysis aims to provide valuable insights for researchers, food scientists, and industry professionals seeking to optimize the use of essential oils with antimicrobial properties in dairy formulations.

2.
Food Funct ; 15(2): 460-480, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38170850

RESUMO

Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.


Assuntos
Intolerância à Lactose , Verduras , Criança , Humanos , Animais , Bovinos , Bebidas , Sementes , Grão Comestível
3.
Metabolites ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248838

RESUMO

Germination is a simple and cost-effective technology that enhances the technological, sensory, and nutritional potential of grains, making them more attractive for use in the food industry. Germinating indigenous seeds is an alternative to increase noticeability and add value to these grains, which hold social and economic significance in the regions where they are cultivated, such as creole purple pericarp corn (PPCC) from the Couto Magalhães de Minas region in Brazil. This study aimed to optimize the germination parameters of time (24-96 h) and temperature (18-32 °C) for PPCC to produce water-soluble extracts and bread. Endogenous enzymes resulting from the germination process significantly enhanced (p < 0.10) the technological (total reducing sugars, total soluble solids, and soluble proteins) and biological properties (γ-aminobutyric acid, total soluble phenolic compounds, and antioxidant capacity) of the water-soluble extracts. The optimum point for obtaining the extracts was found to be at 85.3 h at 30.46 °C (with desirability of 90.42%), and this was statistically validated. The incorporation of germinated PPCC flours into bread was also promising (p < 0.10) and had a positive impact on the dough property (dough volume increase) and the final product, especially in terms of instrumental texture (springiness, cohesiveness, gumminess, chewiness, and resilience), resulting in a softer texture (lower firmness and hardness). The addition of PPCC flours did not alter instrumental color parameters, which may lead to greater consumer acceptance due to imperceptible differences in color to untrained individuals, with the optimized point at 96 h at 29.34 °C, with a desirability of 92.60%. Therefore, germinated PPCC shows promise for use as a base for obtaining water-soluble extracts and in bread as a replacement for commercial flour improvers, while also adding value to a raw material that is part of the local culture and agrobiodiversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA