Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 549, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725857

RESUMO

The genetics underlying tuberculosis (TB) pathophysiology are poorly understood. Human genome-wide association studies have failed so far to reveal reproducible susceptibility loci, attributed in part to the influence of the underlying Mycobacterium tuberculosis (Mtb) bacterial genotype on the outcome of the infection. Several studies have found associations of human genetic polymorphisms with Mtb phylo-lineages, but studies analysing genome-genome interactions are needed. By implementing a phylogenetic tree-based Mtb-to-human analysis for 714 TB patients from Thailand, we identify eight putative genetic interaction points (P < 5 × 10-8) including human loci DAP and RIMS3, both linked to the IFNγ cytokine and host immune system, as well as FSTL5, previously associated with susceptibility to TB. Many of the corresponding Mtb markers are lineage specific. The genome-to-genome analysis reveals a complex interactome picture, supports host-pathogen adaptation and co-evolution in TB, and has potential applications to large-scale studies across many TB endemic populations matched for host-pathogen genomic diversity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Estudo de Associação Genômica Ampla , Filogenia , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Genoma , Interações Hospedeiro-Patógeno/genética
2.
Front Microbiol ; 12: 746320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603273

RESUMO

Mycobacterium tuberculosis expresses a large number of leaderless mRNA transcripts; these lack the 5' leader region, which usually contains the Shine-Dalgarno sequence required for translation initiation in bacteria. In M. tuberculosis, transcripts encoding proteins like toxin-antitoxin systems are predominantly leaderless and the overall ratio of leaderless to Shine-Dalgarno transcripts significantly increases during growth arrest, suggesting that leaderless translation might be important during persistence in the host. However, whether these two types of transcripts are translated with differing efficiencies during optimal growth conditions and during stress conditions that induce growth arrest, is unclear. Here, we have used the desA1 (Rv0824c) and desA2 (Rv1094) gene pair as representative for Shine-Dalgarno and leaderless transcripts in M. tuberculosis respectively; and used them to construct bioluminescent reporter strains. We detect robust leaderless translation during exponential in vitro growth, and we show that leaderless translation is more stable than Shine-Dalgarno translation during adaptation to stress conditions. These changes are independent from transcription, as transcription levels did not significantly change following quantitative real-time PCR analysis. Upon entrance into nutrient starvation and after nitric oxide exposure, leaderless translation is significantly less affected by the stress than Shine-Dalgarno translation. Similarly, during the early stages of infection of macrophages, the levels of leaderless translation are transiently more stable than those of Shine-Dalgarno translation. These results suggest that leaderless translation may offer an advantage in the physiology of M. tuberculosis. Identification of the molecular mechanisms underlying this translational regulation may provide insights into persistent infection.

3.
Sci Rep ; 9(1): 5204, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914757

RESUMO

Human tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a complex disease, with a spectrum of outcomes. Genomic, transcriptomic and methylation studies have revealed differences between Mtb lineages, likely to impact on transmission, virulence and drug resistance. However, so far no studies have integrated sequence-based genomic, transcriptomic and methylation characterisation across a common set of samples, which is critical to understand how DNA sequence and methylation affect RNA expression and, ultimately, Mtb pathogenesis. Here we perform such an integrated analysis across 22 M. tuberculosis clinical isolates, representing ancient (lineage 1) and modern (lineages 2 and 4) strains. The results confirm the presence of lineage-specific differential gene expression, linked to specific SNP-based expression quantitative trait loci: with 10 eQTLs involving SNPs in promoter regions or transcriptional start sites; and 12 involving potential functional impairment of transcriptional regulators. Methylation status was also found to have a role in transcription, with evidence of differential expression in 50 genes across lineage 4 samples. Lack of methylation was associated with three novel variants in mamA, likely to cause loss of function of this enzyme. Overall, our work shows the relationship of DNA sequence and methylation to RNA expression, and differences between ancient and modern lineages. Further studies are needed to verify the functional consequences of the identified mechanisms of gene expression regulation.


Assuntos
Metilação de DNA , DNA Bacteriano , Regulação da Expressão Gênica , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Transcriptoma , Tuberculose , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Tuberculose/genética , Tuberculose/metabolismo
4.
Sci Rep ; 7: 42225, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176867

RESUMO

Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions.


Assuntos
Macrófagos/microbiologia , Macrófagos/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Células Cultivadas , Raios gama , Perfilação da Expressão Gênica , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Camundongos , Mycobacterium tuberculosis/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Transcriptoma/genética , Tuberculose/genética , Tuberculose/imunologia
5.
Sci Rep ; 6: 26221, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193696

RESUMO

A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Anti-Infecciosos Locais/metabolismo , Dioxigenases/biossíntese , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Triclosan/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Dioxigenases/genética , Deleção de Genes , Expressão Gênica , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética
6.
Genome Biol ; 17: 32, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911872

RESUMO

BACKGROUND: Legumes are the third largest family of angiosperms and the second most important crop class. Legume genomes have been shaped by extensive large-scale gene duplications, including an approximately 58 million year old whole genome duplication shared by most crop legumes. RESULTS: We report the genome and the transcription atlas of coding and non-coding genes of a Mesoamerican genotype of common bean (Phaseolus vulgaris L., BAT93). Using a comprehensive phylogenomics analysis, we assessed the past and recent evolution of common bean, and traced the diversification of patterns of gene expression following duplication. We find that successive rounds of gene duplications in legumes have shaped tissue and developmental expression, leading to increased levels of specialization in larger gene families. We also find that many long non-coding RNAs are preferentially expressed in germ-line-related tissues (pods and seeds), suggesting that they play a significant role in fruit development. Our results also suggest that most bean-specific gene family expansions, including resistance gene clusters, predate the split of the Mesoamerican and Andean gene pools. CONCLUSIONS: The genome and transcriptome data herein generated for a Mesoamerican genotype represent a counterpart to the genomic resources already available for the Andean gene pool. Altogether, this information will allow the genetic dissection of the characters involved in the domestication and adaptation of the crop, and their further implementation in breeding strategies for this important crop.


Assuntos
Genoma de Planta , Repetições de Microssatélites/genética , Phaseolus/genética , Transcriptoma/genética , DNA de Plantas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genótipo , Humanos , Filogenia , Sementes/genética , Análise de Sequência de DNA
7.
BMC Genomics ; 16: 907, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546125

RESUMO

BACKGROUND: Down syndrome (DS) or trisomy 21 is the result of a genetic dosage imbalance that translates in a broad clinical spectrum. A major challenge in the study of DS is the identification of functional genetic elements with wide impact on phenotypic alterations. Recently, miRNAs have been recognized as major contributors to several disease conditions by acting as post-transcriptional regulators of a plethora of genes. Five chromosome 21 (HSA21) miRNAs have been found overexpressed in DS individuals and could function as key elements in the pathophysiology. Interestingly, in the trisomic Ts65Dn DS mouse model two of these miRNAs (miR-155 and miR-802) are also triplicated and overexpressed in brain. RESULTS: In the current work, we interrogated the impact of miR-155 and miR-802 upregulation on the transcriptome of Ts65Dn brains. We developed a lentiviral miRNA-sponge strategy (Lv-miR155-802T) to identify in vivo relevant miR-155 and miR-802 target mRNAs. Hippocampal injections of lentiviral sponges in Ts65Dn mice normalized the expression of miR-155 and miR-802 and rescued the levels of their targets methyl-CpG-binding protein 2 gene (Mecp2), SH2 (Src homology 2)-containing inositol phosphatase-1 (Ship1) and Forkhead box protein M1 (FoxM1). Transcriptomic data of Lv-miR155-802T miRNA-sponge treated hippocampi correlated with candidate targets highlighting miRNA dosage-sensitive genes. Significant associations were found in a subset of genes (Rufy2, Nova1, Nav1, Thoc1 and Sumo3) that could be experimentally validated. CONCLUSIONS: The lentiviral miRNA-sponge strategy demonstrated the genome-wide regulatory effects of miR-155 and miR-802. Furthermore, the analysis combining predicted candidates and experimental transcriptomic data proved to retrieve genes with potential significance in DS-hippocampal phenotype bridging with DS other neurological-associated diseases such as Alzheimer's disease.


Assuntos
Síndrome de Down/genética , Hipocampo/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos
8.
Vaccine ; 33(23): 2710-8, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25869896

RESUMO

BACKGROUND: Mycobacterium bovis BCG is presently the only available anti-tuberculosis vaccine used, worldwide. While BCG protects against miliary tuberculosis (TB) and tuberculoid meningitis in children, it often fails to protect against adult pulmonary TB. It is thus imperative that new improved anti-TB vaccines are developed. The integration of the ESX-1 secretion system, absent from BCG due to the deletion of region of difference 1 (RD1), into the genome of BCG has been shown to confer to BCG::ESX-1 enhanced protection against TB as compared to BCG. METHODS: In the present study, to counterbalance the increase in virulence resulting from the integration of the RD1 region into BCG, we have constructed and evaluated several BCG::ESX-1 variants that carry selected amino-acid changes in the ESX-1-secreted antigen ESAT-6. In order to find the candidate that combines low virulence with high protective efficacy, these novel recombinant BCG::ESX-1 strains were tested for their virulence properties and their protective efficacy against Mycobacterium tuberculosis in two different animal models (mouse and guinea-pig). RESULTS: Among several candidates tested, the BCG::ESAT-L28A/L29S strain, carrying modifications at residues Leu(28)-Leu(29) of the ESAT molecule, showed strong attenuation in mice and high protective efficiency both in mouse and guinea-pig vaccination-infection models. CONCLUSION: This strain thus represents a promising candidate that merits further investigations and development. Our research also provides the proof of concept that selected ESX-1-complemented BCG strains may show low virulence and increased protective potential over parental strains.


Assuntos
Antígenos de Bactérias/biossíntese , Vacina BCG/imunologia , Proteínas de Bactérias/biossíntese , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/genética , Vacina BCG/administração & dosagem , Vacina BCG/efeitos adversos , Vacina BCG/genética , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Feminino , Cobaias , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Baço/microbiologia , Análise de Sobrevida , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Virulência
9.
Vaccine ; 33(11): 1353-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25657094

RESUMO

Having demonstrated previously that deletion of zinc metalloprotease zmp1 in Mycobacterium bovis BCG increased immunogenicity of BCG vaccines, we here investigated the protective efficacy of BCG zmp1 deletion mutants in a guinea pig model of tuberculosis infection. zmp1 deletion mutants of BCG provided enhanced protection by reducing the bacterial load of tubercle bacilli in the lungs of infected guinea pigs. The increased efficacy of BCG due to zmp1 deletion was demonstrated in both BCG Pasteur and BCG Denmark indicating that the improved protection by zmp1 deletion is independent from the BCG sub-strain. In addition, unmarked BCG Δzmp1 mutant strains showed a better safety profile in a CB-17 SCID mouse survival model than the parental BCG strains. Together, these results support the further development of BCG Δzmp1 for use in clinical trials.


Assuntos
Proteínas de Bactérias/genética , Metaloproteases/genética , Mycobacterium bovis/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Carga Bacteriana , Dinamarca , Modelos Animais de Doenças , Deleção de Genes , Granuloma/microbiologia , Cobaias , Pulmão/microbiologia , Pulmão/ultraestrutura , Camundongos , Mutação , Mycobacterium bovis/imunologia , Mycobacterium bovis/isolamento & purificação , Mycobacterium bovis/patogenicidade , Baço/microbiologia , Vacinas Atenuadas/imunologia
10.
J Antimicrob Chemother ; 68(9): 2118-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23633686

RESUMO

OBJECTIVES: In vivo experimentation is costly and time-consuming, and presents a major bottleneck in anti-tuberculosis drug development. Conventional methods rely on the enumeration of bacterial colonies, and it can take up to 4 weeks for Mycobacterium tuberculosis to grow on agar plates. Light produced by recombinant bacteria expressing luciferase enzymes can be used as a marker of bacterial load, and disease progression can be easily followed non-invasively in live animals by using the appropriate imaging equipment. The objective of this work was to develop a bioluminescence-based mouse model of tuberculosis to assess antibiotic efficacy against M. tuberculosis in vivo. METHODS: We used an M. tuberculosis strain carrying a red-shifted derivative of the firefly luciferase gene (FFlucRT) to infect mice, and monitored disease progression in living animals by bioluminescence imaging before and after treatment with the frontline anti-tuberculosis drug isoniazid. The resulting images were analysed and the bioluminescence was correlated with bacterial counts. RESULTS: Using bioluminescence imaging we detected as few as 1.7 × 10(3) and 7.5 × 10(4) reporter bacteria ex vivo and in vivo, respectively, in the lungs of mice. A good correlation was found between bioluminescence and bacterial load in both cases. Furthermore, a marked reduction in luminescence was observed in living mice given isoniazid treatment. CONCLUSIONS: We have shown that an improved bioluminescent strain of M. tuberculosis can be visualized by non-invasive imaging in live mice during an acute, progressive infection and that this technique can be used to rapidly visualize and quantify the effect of antibiotic treatment. We believe that the model presented here will be of great benefit in early drug discovery as an easy and rapid way to identify active compounds in vivo.


Assuntos
Antituberculosos/administração & dosagem , Luciferases de Vaga-Lume/análise , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/microbiologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Genes Reporter , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Camundongos , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose/tratamento farmacológico , Imagem Corporal Total
11.
Methods Mol Biol ; 983: 403-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23494320

RESUMO

Mycobacterium marinum is the causative agent of fish and amphibian tuberculosis in the wild. It is a genetically close cousin of Mycobacterium tuberculosis, and thereby the infection process remarkably shares many of the hallmarks of M. tuberculosis infection in human, at both the cellular and organism levels. Therefore, M. marinum is used as a model for the study of mycobacterial infection in various host organisms. Recently, the Dictyostelium-M. marinum system has been shown to be a valuable model that recapitulates the main features of the intracellular fate of M. marinum including phagosome maturation arrest, as well as its particular cell-to-cell dissemination mode. We present here a "starter kit" of detailed methods that allows to establish an infection of Dictyostelium with M. marinum and to monitor quantitatively the intracellular bacterial growth.


Assuntos
Dictyostelium/microbiologia , Mycobacterium marinum/fisiologia , Animais , Soluções Tampão , Técnicas de Cultura , Doenças dos Peixes/microbiologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/biossíntese , Interações Hospedeiro-Patógeno , Microscopia de Fluorescência , Fagocitose , Espectrometria de Fluorescência
12.
Oncotarget ; 4(1): 94-105, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23328228

RESUMO

Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.


Assuntos
Ganciclovir/farmacologia , Terapia Genética/métodos , Neoplasias Pancreáticas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Ducto Colédoco/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Estimativa de Kaplan-Meier , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Transgênicos , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Timidina Quinase/genética , Timidina Quinase/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
13.
Small ; 8(16): 2495-500, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22648794

RESUMO

Bio-sprays can directly form pre-organized cell-bearing structures for applications ranging from engineering functional tissues to the forming of cultures, most useful for modeling disease, to the discovery and development of drugs. Bio-electrosprays and aerodynamically assisted bio-jets, are leading approaches that have been demonstrated as having far-reaching ramifications for regenerative biology and medicine.


Assuntos
Células/metabolismo , Engenharia Tecidual/métodos , Animais , Divisão Celular , Linhagem Celular Tumoral , Forma Celular , Sobrevivência Celular , Citometria de Fluxo , Medições Luminescentes , Camundongos
14.
J Antimicrob Chemother ; 67(8): 1948-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635525

RESUMO

OBJECTIVES: The current method for testing new drugs against tuberculosis in vivo is the enumeration of bacteria in organs by cfu assay. Owing to the slow growth rate of Mycobacterium tuberculosis (Mtb), these assays can take months to complete. Our aim was to develop a more efficient, fluorescence-based imaging assay to test new antibiotics in a mouse model using Mtb reporter strains. METHODS: A commercial IVIS Kinetic® system and a custom-built laser scanning system with fluorescence molecular tomography (FMT) capability were used to detect fluorescent Mtb in living mice and lungs ex vivo. The resulting images were analysed and the fluorescence was correlated with data from cfu assays. RESULTS: We have shown that fluorescent Mtb can be visualized in the lungs of living mice at a detection limit of ∼8 × 107 cfu/lung, whilst in lungs ex vivo a detection limit of ∼2 × 105 cfu/lung was found. These numbers were comparable between the two imaging systems. Ex vivo lung fluorescence correlated to numbers of bacteria in tissue, and the effect of treatment of mice with the antibiotic moxifloxacin could be visualized and quantified after only 9 days through fluorescence measurements, and was confirmed by cfu assays. CONCLUSIONS: We have developed a new and efficient method for anti-tuberculosis drug testing in vivo, based on fluorescent Mtb reporter strains. Using this method instead of, or together with, cfu assays will reduce the time required to assess the preclinical efficacy of new drugs in animal models and enhance the progress of these candidates into clinical trials against human tuberculosis.


Assuntos
Antituberculosos/administração & dosagem , Proteínas Luminescentes/análise , Mycobacterium tuberculosis/efeitos dos fármacos , Coloração e Rotulagem/métodos , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fluorescência , Genes Reporter , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/genética , Pulmão/microbiologia , Camundongos , Camundongos SCID , Testes de Sensibilidade Microbiana/métodos , Sensibilidade e Especificidade , Fatores de Tempo , Resultado do Tratamento , Imagem Corporal Total/métodos
15.
Am J Respir Crit Care Med ; 185(9): 989-97, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22345579

RESUMO

RATIONALE: Tuberculosis kills more than 1.5 million people per year, and standard treatment has remained unchanged for more than 30 years. Tuberculosis (TB) drives matrix metalloproteinase (MMP) activity to cause immunopathology. In advanced HIV infection, tissue destruction is reduced, but underlying mechanisms are poorly defined and no current antituberculous therapy reduces host tissue damage. OBJECTIVES: To investigate MMP activity in patients with TB with and without HIV coinfection and to determine the potential of doxycycline to inhibit MMPs and decrease pathology. METHODS: Concentrations of MMPs and cytokines were analyzed by Luminex array in a prospectively recruited cohort of patients. Modulation of MMP secretion and Mycobacterium tuberculosis growth by doxycycline was studied in primary human cells and TB-infected guinea pigs. MEASUREMENTS AND MAIN RESULTS: HIV coinfection decreased MMP concentrations in induced sputum of patients with TB. MMPs correlated with clinical markers of tissue damage, further implicating dysregulated protease activity in TB-driven pathology. In contrast, cytokine concentrations were no different. Doxycycline, a licensed MMP inhibitor, suppressed TB-dependent MMP-1 and -9 secretion from primary human macrophages and epithelial cells by inhibiting promoter activation. In the guinea pig model, doxycycline reduced lung TB colony forming units after 8 weeks in a dose-dependent manner compared with untreated animals, and in vitro doxycycline inhibited mycobacterial proliferation. CONCLUSIONS: HIV coinfection in patients with TB reduces concentrations of immunopathogenic MMPs. Doxycycline decreases MMP activity in a cellular model and suppresses mycobacterial growth in vitro and in guinea pigs. Adjunctive doxycycline therapy may reduce morbidity and mortality in TB.


Assuntos
Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Infecções por HIV/complicações , Metaloproteinases da Matriz/efeitos dos fármacos , Tuberculose Pulmonar/enzimologia , Adulto , Animais , Antibacterianos/farmacologia , Contagem de Linfócito CD4 , Citocinas/análise , Doxiciclina/farmacologia , Cobaias , Infecções por HIV/enzimologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Escarro/química , Escarro/enzimologia , Tuberculose Pulmonar/complicações , Adulto Jovem
16.
J Antimicrob Chemother ; 67(2): 404-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22101217

RESUMO

OBJECTIVES: Tuberculosis drug development is hampered by the slow growth of Mycobacterium tuberculosis. Bioluminescence, light produced by an enzymatic reaction, constitutes a rapid and highly sensitive measurement of cell metabolic function that can be used as an indirect marker of cell viability in drug screening assays. The aim of this work was to validate and standardize the use of luminescent M. tuberculosis strains to test the activity of antibacterial drugs in vitro and inside macrophages in a 96-well format. METHODS: We have used strains that express the bacterial lux operon and therefore do not require exogenous substrate to produce light, as well as strains expressing the firefly luciferase that need luciferin substrate. Results were compared with those obtained using the resazurin reduction assay and cfu plating. RESULTS: Using bioluminescence we were able to reduce the time required to measure the MIC and bactericidal concentrations of antimicrobials to just 3 and 6 days, respectively. Furthermore, antibacterial activity against intracellular mycobacteria was detected within 2 days post-infection. Results were comparable to those obtained by conventional methods. CONCLUSIONS: We have developed a simple and rapid method for screening antimycobacterial drugs in culture and in macrophages. The use of autoluminescent bacteria also facilitates the determination of growth and inhibition kinetics. The method is cost-effective, can easily be adapted to a larger scale and is amenable to automation. Current efforts are directed towards applying this technology to drug screening in vivo.


Assuntos
Antituberculosos/farmacologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Custos e Análise de Custo , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/economia , Medições Luminescentes/métodos , Testes de Sensibilidade Microbiana/economia , Testes de Sensibilidade Microbiana/métodos , Sensibilidade e Especificidade , Fatores de Tempo
17.
PLoS One ; 6(10): e26142, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028820

RESUMO

Replication-competent adenoviruses armed with thymidine kinase (TK) combine the concepts of virotherapy and suicide gene therapy. Moreover TK-activity can be detected by noninvasive positron emission-computed tomography (PET) imaging, what could potentially facilitate virus monitoring in vivo. Here, we report the generation of a novel oncolytic adenovirus that incorporates the Tat8-TK gene under the control of the Major Late Promoter in a highly selective backbone thus providing selectivity by targeting the retinoblastoma pathway. The selective oncolytic TK virus, termed ICOVIR5-TK-L, showed reduced potency compared to a non-selective counterpart. However the combination of ICOVIR5-TK-L with ganciclovir (GCV) induced a potent antitumoural effect similar to that of wild type adenovirus in a preclinical model of pancreatic cancer. Although the treatment with GCV provoked a reduction in the viral yield, both in vitro and in vivo, a two-cycle treatment of virus and GCV resulted in an enhanced antitumoral response that correlated with high TK-activity, based on microPET measurements. Thus, TK-expressing oncolytic adenoviruses can be traced by PET imaging providing real time information on the activity of the virus and its antitumoral potency can be optimized by GCV dosing.


Assuntos
Adenoviridae/genética , Antineoplásicos/farmacologia , Ganciclovir/farmacologia , Vírus Oncolíticos/genética , Tomografia por Emissão de Pósitrons , Timidina Quinase/genética , Adenoviridae/efeitos dos fármacos , Adenoviridae/fisiologia , Animais , Antineoplásicos/efeitos adversos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ganciclovir/efeitos adversos , Humanos , Camundongos , Vírus Oncolíticos/efeitos dos fármacos , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Regiões Promotoras Genéticas/genética , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
PLoS One ; 6(2): e17010, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364922

RESUMO

DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term.


Assuntos
Comportamento Animal/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Animais , Aprendizagem da Esquiva/fisiologia , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/fisiologia , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia , Natação/fisiologia , Regulação para Cima/genética
19.
FEMS Microbiol Rev ; 35(2): 360-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20955395

RESUMO

According to World Health Organization estimates, infectious organisms are responsible for approximately one in four deaths worldwide. Animal models play an essential role in the development of vaccines and therapeutic agents but large numbers of animals are required to obtain quantitative microbiological data by tissue sampling. Biophotonic imaging (BPI) is a highly sensitive, nontoxic technique based on the detection of visible light, produced by luciferase-catalysed reactions (bioluminescence) or by excitation of fluorescent molecules, using sensitive photon detectors. The development of bioluminescent/fluorescent microorganisms therefore allows the real-time noninvasive detection of microorganisms within intact living animals. Multiple imaging of the same animal throughout an experiment allows disease progression to be followed with extreme accuracy, reducing the number of animals required to yield statistically meaningful data. In the study of infectious disease, the use of BPI is becoming widespread due to the novel insights it can provide into established models, as well as the impact of the technique on two of the guiding principles of using animals in research, namely reduction and refinement. Here, we review the technology of BPI, from the instrumentation through to the generation of a photonic signal, and illustrate how the technique is shedding light on infection dynamics in vivo.


Assuntos
Doenças Transmissíveis/diagnóstico , Diagnóstico por Imagem/métodos , Medições Luminescentes/métodos , Animais , Bactérias/química , Bactérias/enzimologia , Bactérias/genética , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Fungos/química , Fungos/enzimologia , Fungos/genética , Humanos , Luciferases/análise , Luciferases/genética , Luciferases/metabolismo , Camundongos , Parasitos/química , Parasitos/enzimologia , Parasitos/genética , Vírus/química , Vírus/enzimologia , Vírus/genética
20.
PLoS One ; 5(5): e10777, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20520722

RESUMO

BACKGROUND: Mycobacterium tuberculosis, the causative agent of tuberculosis, still represents a major public health threat in many countries. Bioluminescence, the production of light by luciferase-catalyzed reactions, is a versatile reporter technology with multiple applications both in vitro and in vivo. In vivo bioluminescence imaging (BLI) represents one of its most outstanding uses by allowing the non-invasive localization of luciferase-expressing cells within a live animal. Despite the extensive use of luminescent reporters in mycobacteria, the resultant luminescent strains have not been fully applied to BLI. METHODOLOGY/PRINCIPAL FINDINGS: One of the main obstacles to the use of bioluminescence for in vivo imaging is the achievement of reporter protein expression levels high enough to obtain a signal that can be detected externally. Therefore, as a first step in the application of this technology to the study of mycobacterial infection in vivo, we have optimised the use of firefly, Gaussia and bacterial luciferases in mycobacteria using a combination of vectors, promoters, and codon-optimised genes. We report for the first time the functional expression of the whole bacterial lux operon in Mycobacterium tuberculosis and M. smegmatis thus allowing the development of auto-luminescent mycobacteria. We demonstrate that the Gaussia luciferase is secreted from bacterial cells and that this secretion does not require a signal sequence. Finally we prove that the signal produced by recombinant mycobacteria expressing either the firefly or bacterial luciferases can be non-invasively detected in the lungs of infected mice by bioluminescence imaging. CONCLUSIONS/SIGNIFICANCE: While much work remains to be done, the finding that both firefly and bacterial luciferases can be detected non-invasively in live mice is an important first step to using these reporters to study the pathogenesis of M. tuberculosis and other mycobacterial species in vivo. Furthermore, the development of auto-luminescent mycobacteria has enormous ramifications for high throughput mycobacterial drug screening assays which are currently carried out either in a destructive manner using LuxAB or the firefly luciferase.


Assuntos
Genes Reporter/genética , Imageamento Tridimensional/métodos , Proteínas Luminescentes/metabolismo , Mycobacterium smegmatis/metabolismo , Animais , Códon/genética , Expressão Gênica , Vetores Genéticos/genética , Cinética , Luciferases/metabolismo , Proteínas Luminescentes/genética , Camundongos , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...