Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 122(4): 1003-1010, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28008100

RESUMO

Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C2C12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C2C12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid.NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes.


Assuntos
Melatonina/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo/fisiologia , Triglicerídeos/metabolismo , Ácido Úrico/metabolismo , Animais , Antioxidantes/metabolismo , Linhagem Celular , Respiração Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Transporte de Elétrons/fisiologia , Camundongos , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia
2.
Am J Physiol Endocrinol Metab ; 310(9): E715-23, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908505

RESUMO

Oxidation of fatty acids is a major source of energy in the heart, liver, and skeletal muscle. It can be measured accurately using respirometry in isolated mitochondria, intact cells, and permeabilized cells or tissues. This technique directly measures the rate of oxygen consumption or flux at various respiratory states when appropriate substrates, uncouplers, and inhibitors are used. Acylcarnitines such as palmitoylcarnitine or octanoylcarnitine are the commonly used substrates. The ß-oxidation pathway is prone to feedforward inhibition resulting from accumulation of short-chain acyl-CoA and depletion of CoA, but inclusion of malate or carnitine prevents accumulation of these intermediaries and CoA depletion.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Acil Coenzima A/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Coenzima A/metabolismo , Eletrodos , Retroalimentação Fisiológica , Humanos , Malatos/metabolismo , Oxirredução , Fosforilação Oxidativa , Palmitoilcarnitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA