Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27868, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533006

RESUMO

Waste management is fundamental to resource and environmental sustainability. Expanded polystyrene (EPS) and polyurethane (PU) waste plastics were recycled and applied as binder in emulsion paint formulation. The recycled polystyrene (rPS) and polyurethane (rPU) were blended into composite resins, where toluene was used as the solvent. The blends of rPS and rPU were optimized, while some physicochemical properties of the composite blends (rPS/PU) were evaluated. The results showed that the incorporation of rPU into rPS increased the viscosity (1818 mPa-3924 mPa), rate of gelation (dry-to-touch time: 15 min-0.25 min), moisture content (2.7%-8.1%), moisture uptake (3.2%-5.0%), solid content (48%-53.4%) and density (0.82 g/cm3 to 1.050.82 g/cm3) of the rPS/PU composite resins. Characterization was carried out using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and atomic force microscopy (AFM). The results summarily showed that there are interactions among the rPS and rPU molecules in the composite, where complimentary structural and morphological characteristics were also achieved. The composite resin also exhibited superior bond strength (0.5-4.24 Mpa) on wood, cast mortar, ceramic, and steel surfaces due to its stronger intra- and inter-surface interactions compared to the neat rPS resin. The composite resin was used as a binder in the formulation of emulsion paint. The paint exhibited stronger resistance to water, among other superior properties, when compared to the paints formulated using neat rPS and conventional polyvinyl acetate (PVA) resins. The reduction of plastic waste in this study holds potential for the production of highly water-resistant emulsion paint for outdoor and indoor applications.

2.
Sci Rep ; 12(1): 11701, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810245

RESUMO

Acinetobacter baumannii is an infectious agent of global proportion and concern, partly due to its proficiency in development of antibiotic resistance phenotypes and biofilm formation. Dithiocarbamates (DTC) have been identified as possible alternatives to the current antimicrobials. We report here the evaluation of several DTC-metal complexes against A. baumannii planktonic cells and biofilms. Among the DTC-metal complexes and DTCs tested, ZnL1 (N-methyl-1-phenyldithiocarbamato-S,S' Zn(II)), originally designed as an antitumor agent, is effective against biofilm forming A. baumannii. A MIC value of 12.5 µM, comparable to that of Gentamicin (5 µM) was measured for planktonic cells in tryptic soy broth. Spectroscopy, microscopy and biochemical analyses reveal cell membrane degradation and leakage after treatment with ZnL1. Bioelectrochemical analyses show that ZnL1 reduces biofilm formation and decreases extracellular respiration of pre-formed biofilms, as corroborated by microscopic analyses. Due to the affinity of Zn to cells and the metal chelating nature of L1 ligand, we hypothesize ZnL1 could alter metalloprotein functions in the membranes of A. baumannii cells, leading to altered redox balance. Results indicate that the DTC-Zn metal complex is an effective antimicrobial agent against early A. baumannii biofilms under laboratory conditions.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Complexos de Coordenação , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Complexos de Coordenação/farmacologia , Testes de Sensibilidade Microbiana , Plâncton , Zinco/farmacologia
3.
ACS Omega ; 5(42): 27142-27153, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134674

RESUMO

Bis(morpholinyl-4-carbodithioato)-platinum(II) was synthesized and characterized using spectroscopic techniques and single-crystal X-ray crystallography. The Pt(II) complex crystallized in a monoclinic space group P21/n with a Pt(II) ion located on an inversion center coordinated two morpholinyl dithiocarbamate ligands that are coplanar to form a slightly distorted square planar geometry around the Pt(II) ion. The complex was thermolyzed at 120, 180, and 240 °C to prepare PtS2 nanoparticles. Powder X-ray diffraction patterns confirmed the hexagonal crystalline phase for the as-prepared PtS2 nanoparticles irrespective of thermolysis temperature. Bead-like shaped PtS2-120 nanoparticles with a particle size in the range of 12.46-64.97 nm were formed at 120 °C, while PtS2-180 prepared at 180 °C is quasi-spherical in shape with particles in the range of 24.30-46.87 nm. The PtS2-240 obtained at 240 °C is spherical with particles in the range of 11.45-46.85 nm. The broad emission maxima of the as-prepared PtS2 nanoparticles are ascribed to the particles' broad size distributions. The photocatalytic degradation of methylene blue by the PtS2 nanoparticles shows a maximum efficiency of 87% for PtS2-240 after 360 min. The effects of photocatalytic dosage, irradiation time, pH medium, and scavengers were also evaluated. Cyclic voltammetry of the PtS2 nanoparticles showed a reversible redox reaction, while the electrochemistry of the as-prepared PtS2 indicates that the electron transfer process is diffusion-controlled.

4.
Molecules ; 25(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781741

RESUMO

Cu(II) and Zn(II) morpholinyldithiocarbamato complexes, formulated as [Cu(MphDTC)2] and [Zn(µ-MphDTC)2(MphDTC)2], where MphDTC is morpholinyldithiocarbamate were synthesized and characterized by elemental analysis, spectroscopic techniques and single-crystal X-ray crystallography. The molecular structure of the Cu(II) complex revealed a mononuclear compound in which the Cu(II) ion was bonded to two morpholinyl dithiocarbamate ligands to form a four-coordinate distorted square planar geometry. The molecular structure of the Zn(II) complex was revealed to be dinuclear, and each metal ion was bonded to two morpholinyl dithiocarbamate bidentate anions, one acting as chelating ligand, the other as a bridge between the two Zn(II) ions. The anticancer activity of the morpholinyldithiocarbamate ligand, Cu(II) and Zn(II) complexes were evaluated against renal (TK10), melanoma (UACC62) and breast (MCF7) cancer cells by a Sulforhodamine B (SRB) assay. Morpholinyldithiocarbamate was more active than the standard drug parthenolide against renal and breast cancer cell lines, and [Zn(µ-MphDTC)2(MphDTC)2] was the most active complex against breast cancer. The copper(II) complex had a comparable activity with the standard against renal and breast cancer cell lines but showed an enhanced potency against melanoma when compared to parthenolide.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Tiocarbamatos/química , Zinco/química , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Complexos de Coordenação/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...