Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(8): 1685-1691, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471497

RESUMO

Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) generates unique mass spectra in X/Y coordinates across a tissue sample, thus allowing for the spatial detection and relative quantification of biologic compounds in situ. The soft ionization of MALDI-IMS makes it an ideal technique for high-resolution imaging of complex lipid species. Lipid-based spatial chemical maps derived from MALDI-IMS provide critical insight into the unique molecular profiles of a variety of neurologic diseases. Ex vivo brain slice preparations are a prominent alternative to in vivo animal models for studying many different neurologic conditions. For the first time, we present a feasible protocol for achieving reproducible lipidomic MALDI-IMS data from ex vivo rat brain slices and provide evidence that ex vivo brain slices maintain spatiochemical lipidomic profiles representative of an intact whole brain. We conducted a methods comparison assessing the lipid profiles within the neocortex, striatum, and corpus callosum between coronal sections taken from ex vivo brain slices and the current gold standard tissue preparation method, fresh frozen whole brains. For the first time we demonstrate a technique by which 400 µm ex vivo brain slices can be extracted from an imaging chamber and prepared for MALDI-IMS in a way that preserves their lipidomic integrity. We demonstrate the feasibility of MALDI-IMS in ex vivo brain slices and provide a roadmap for MALDI-IMS utilization in uncharted neuroscience fields.


Assuntos
Química Encefálica , Encéfalo , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estudos de Viabilidade , Lipídeos
2.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257321

RESUMO

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Acidente Vascular Cerebral , Lesões Encefálicas/terapia , Consenso , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos
3.
Neurocrit Care ; 37(Suppl 1): 11-30, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194729

RESUMO

BACKGROUND: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos , Isquemia
4.
Neurocrit Care ; 35(Suppl 2): 112-134, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34498208

RESUMO

An acute reduction in plasma osmolality causes rapid uptake of water by astrocytes but not by neurons, whereas both cell types swell as a consequence of lost blood flow (ischemia). Either hypoosmolality or ischemia can displace the brain downwards, potentially causing death. However, these disorders are fundamentally different at the cellular level. Astrocytes osmotically swell or shrink because they express functional water channels (aquaporins), whereas neurons lack functional aquaporins and thus maintain their volume. Yet both neurons and astrocytes immediately swell when blood flow to the brain is compromised (cytotoxic edema) as following stroke onset, sudden cardiac arrest, or traumatic brain injury. In each situation, neuronal swelling is the direct result of spreading depolarization (SD) generated when the ATP-dependent sodium/potassium ATPase (the Na+/K+ pump) is compromised. The simple, and incorrect, textbook explanation for neuronal swelling is that increased Na+ influx passively draws Cl- into the cell, with water following by osmosis via some unknown conduit. We first review the strong evidence that mammalian neurons resist volume change during acute osmotic stress. We then contrast this with their dramatic swelling during ischemia. Counter-intuitively, recent research argues that ischemic swelling of neurons is non-osmotic, involving ion/water cotransporters as well as at least one known amino acid water pump. While incompletely understood, these mechanisms argue against the dogma that neuronal swelling involves water uptake driven by an osmotic gradient with aquaporins as the conduit. Promoting clinical recovery from neuronal cytotoxic edema evoked by spreading depolarizations requires a far better understanding of molecular water pumps and ion/water cotransporters that act to rebalance water shifts during brain ischemia.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Astrócitos , Neurônios , Osmose
5.
J Alzheimers Dis ; 79(4): 1547-1561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459722

RESUMO

BACKGROUND: Neuronal damage resulting from increased oxidative stress is important in the development of late onset/age-related Alzheimer's disease (LOAD). We have developed an oxidative stress-related mouse model of LOAD based on gene deletion of aldehyde dehydrogenase 2 (ALDH2), an enzyme important for the detoxification of endogenous aldehydes arising from lipid peroxidation. Compared to wildtype (WT) mice, the knockout (KO) mice exhibit AD-like pathologies and a progressive decline in recognition and spatial memory. This progression presumably has a morphological basis induced by oxidative damage. OBJECTIVE: We performed morphometric analyses in the dorsal hippocampal CA1 region (dCA1) to determine if altered neuronal structure can help account for the progressive cognitive impairment in 3- to 12-month-old KO mice. METHODS: Dendritic morphology was quantitatively analyzed by branched structured analysis and Sholl analysis following Golgi-Cox staining in WT mice (148 neurons) versus KO mice (180 neurons). RESULTS: The morphology and complexity of dCA1 pyramidal neurons were similar at age 3 months in WTs and KOs. However, by 6 months there were significant reductions in apical and basal dendritic length, dendrite complexity, and spine density in KO versus WT mice that were maintained through ages 9 and 12 months. Immunostaining for protein adducts of the lipid peroxidation product 4-hydroxynonenal revealed significant increases in staining in dCA1 (but not ventral CA1) by 3 months, increasing through 12 months. CONCLUSION: This specific and progressive increase in dCA1 oxidative damage preceded detectable synaptic trimming in KO mice, in keeping with studies showing that lesions to dorsal hippocampus primarily impair cognitive memory.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Neurônios/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
6.
J Alzheimers Dis ; 77(4): 1623-1637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925058

RESUMO

BACKGROUND: Dysregulated signaling in neurons and astrocytes participates in pathophysiological alterations seen in the Alzheimer's disease brain, including increases in amyloid-ß, hyperphosphorylated tau, inflammation, calcium dysregulation, and oxidative stress. These are often noted prior to the development of behavioral, cognitive, and non-cognitive deficits. However, the extent to which these pathological changes function together or independently is unclear. OBJECTIVE: Little is known about the temporal relationship between calcium dysregulation and oxidative stress, as some reports suggest that dysregulated calcium promotes increased formation of reactive oxygen species, while others support the opposite. Prior work has quantified several key outcome measures associated with oxidative stress in aldehyde dehydrogenase 2 knockout (Aldh2-/-) mice, a non-transgenic model of sporadic Alzheimer's disease. METHODS: Here, we tested the hypothesis that early oxidative stress can promote calcium dysregulation across aging by measuring calcium-dependent processes using electrophysiological and imaging methods and focusing on the afterhyperpolarization (AHP), synaptic activation, somatic calcium, and long-term potentiation in the Aldh2-/- mouse. RESULTS: Our results show a significant age-related decrease in the AHP along with an increase in the slow AHP amplitude in Aldh2-/- animals. Measures of synaptic excitability were unaltered, although significant reductions in long-term potentiation maintenance were noted in the Aldh2-/- animals compared to wild-type. CONCLUSION: With so few changes in calcium and calcium-dependent processes in an animal model that shows significant increases in HNE adducts, Aß, p-tau, and activated caspases across age, the current findings do not support a direct link between neuronal calcium dysregulation and uncontrolled oxidative stress.


Assuntos
Aldeído-Desidrogenase Mitocondrial/deficiência , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fatores Etários , Aldeído-Desidrogenase Mitocondrial/genética , Doença de Alzheimer/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Molecular/métodos , Neurônios/química , Técnicas de Cultura de Órgãos
7.
Neuroscience ; 442: 202-215, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32653541

RESUMO

The Na+/K+-ATPase is a transmembrane ion pump that has a critical homeostatic role within every mammalian cell; however, it is vulnerable to the effects of increased oxidative stress. Understanding how expression of this transporter is influenced by oxidative stress may yield insight into its role in the pathophysiology of neurological and neuropsychiatric diseases. In this study we investigated whether increased oxidative stress could influence Na+/K+-ATPase expression in various brain regions of mice. We utilized two different models of oxidative stress: a behavioural chronic unpredictable stress protocol and the Aldh2-/- mouse model of oxidative stress-based and age-related cognitive impairment. We identified distinct regional baseline mRNA and protein expression patterns of the Na+/K+-ATPase α1 and α3 isoforms within the neocortex, hippocampus, and brainstem of wildtype mice. Consistent with previous studies, there was a higher proportion of α3 expression relative to α1 in the brainstem versus neocortex, but a higher proportion of α1 expression relative to α3 in the neocortex versus the brainstem. The hippocampus had similar expression levels of both α1 and α3. Despite increased staining for oxidative stress in higher brain, no differences in α1 or α3 expression were noted in Aldh2-/- mice versus wildtype, or in mice exposed to a 28-day chronic unpredictable stress protocol. In both models of oxidative stress, gene and protein expression of Na+/K+-ATPase α1 and α3 isoforms within the higher and lower brain was remarkably stable. Thus, Na+/K+-ATPase function previously reported as altered by oxidative stress is not through induced changes in the expression of pump isoforms.


Assuntos
ATPase Trocadora de Sódio-Potássio , Sódio , Animais , Encéfalo/metabolismo , Camundongos , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
J Alzheimers Dis ; 74(4): 1069-1083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32144984

RESUMO

The study of late-onset (sporadic) Alzheimer's disease (LOAD) has lacked animal models where impairments develop with aging. Oxidative stress promotes LOAD, so we have developed an oxidative stress-based model of age-related cognitive impairment based on gene deletion of aldehyde dehydrogenase 2 (ALDH2). This enzyme is important for the detoxification of endogenous aldehydes arising from lipid peroxidation. Compared to wildtype (WT) mice, the knockout (KO) mice exhibit a progressive decline in recognition and spatial memory and AD-like pathologies. Here we performed morphometric analyses in the dorsal and ventral hippocampal CA1 regions (dCA1 and vCA1) as well as in overlying primary sensory cortex to determine if altered neuronal structure can help account for the cognitive impairment in 12-month old KO mice. Dendritic morphology was quantitatively analyzed following Golgi-Cox staining using 9 WT mice (108 neurons) and 15 KO mice (180 neurons). Four pyramidal neurons were traced per mouse in each region, followed by branched structured analysis and Sholl analysis. Compared to WT controls, the morphology and complexity of dCA1 pyramidal neurons from KOs showed significant reductions in apical and basal dendritic length, dendrite intersections, ends, and nodes. As well, spine density along dorsal CA1 apical dendrites was significantly lower in KO versus WT. In contrast, pyramidal arborization in the vCA1 and primary sensory cortex were only minimally reduced in KO versus WT mice. These data suggest a region-specific vulnerability to oxidative stress-induced damage and/or a major and specific reduction in synaptic input to the pyramidal neurons of the dorsal hippocampus. This is in keeping with studies showing that lesions to the dorsal hippocampus impair primarily cognitive memory whereas ventral hippocampal lesions cause deficits in stress, emotion, and affect.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/citologia , Neocórtex/citologia , Células Piramidais/citologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/patologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/patologia , Células Piramidais/patologia
9.
J Neurophysiol ; 123(3): 885-895, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32023142

RESUMO

Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.


Assuntos
Encefalopatias/fisiopatologia , Córtex Cerebral/fisiopatologia , Fenômenos Eletrofisiológicos/fisiologia , Fisiologia Comparada , Estresse Psicológico/fisiopatologia , Animais , Humanos
10.
Neurocrit Care ; 32(1): 317-322, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388871

RESUMO

Spreading depolarizations (SDs) are profound disruptions of cellular homeostasis that slowly propagate through gray matter and present an extraordinary metabolic challenge to brain tissue. Recent work has shown that SDs occur commonly in human patients in the neurointensive care setting and have established a compelling case for their importance in the pathophysiology of acute brain injury. The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in September of 2018 included a discussion session focused on the question of "Which SDs are deleterious to brain tissue?" iCSD is attended by investigators studying various animal species including invertebrates, in vivo and in vitro preparations, diseases of acute brain injury and migraine, computational modeling, and clinical brain injury, among other topics. The discussion included general agreement on many key issues, but also revealed divergent views on some topics that are relevant to the design of clinical interventions targeting SDs. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was then formally collated, reviewed and incorporated into the final document. It is hoped that this report will stimulate collection of data that are needed to develop a more nuanced understanding of SD in different pathophysiological states, as the field continues to move toward effective clinical interventions.


Assuntos
Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Animais , Eletroencefalografia , Humanos , Enxaqueca com Aura/fisiopatologia
11.
J Neurophysiol ; 121(5): 1650-1663, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30811255

RESUMO

Whereas many studies have examined the properties of the compromised neocortex in the first several days following ischemia, there is less information regarding the initial 12 h poststroke. In this study we examined live mouse neocortical slices harvested immediately and 12 h after a 30-min middle cerebral artery occlusion (MCAo). We compared nonischemic and ischemic hemispheres with regard to the propensity for tissue swelling and for generating spreading depolarization (SD), as well as evoked synaptic responses and single pyramidal neuron electrophysiological properties. We observed spontaneous SD in 7% of slices on the nonstroked side and 25% in the stroked side following the 30-min MCAo. Spontaneous SD was rare in 12-h recovery slices. The region of the ischemic core and surround in slices was not susceptible to SD induced by oxygen and glucose deprivation. At the neuronal level, neocortical gray matter is surprisingly unaltered in brain slices harvested immediately poststroke. However, by 12 h, the fields of pyramidal and striatal neurons that comprise the infarcted core are electrophysiologically silent because the majority are morphologically devastated. Yet, there remains a subset of diffusely distributed "healthy" pyramidal neurons in the core at 12 h post-MCAo that persist for days poststroke. Their intact electrophysiology and dendritic morphology indicate a surprisingly selective resilience to stroke at the neuronal level. NEW & NOTEWORTHY It is generally accepted that the injured core region of the brain resulting from a focal stroke contains no functioning neurons. Our study shows that some neurons, although surrounded by devastated neighbors, can maintain their structure and electrical activity. This surprising finding raises the possibility of discovering how these neurons are protected to pinpoint new strategies for reducing stroke injury.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Infarto da Artéria Cerebral Média/fisiopatologia , Neocórtex/fisiopatologia , Potenciais de Ação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Células Piramidais/fisiologia
12.
Mol Cell Biochem ; 449(1-2): 227-236, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29802597

RESUMO

Pregnancy evokes many challenges on the maternal cardiovascular system that may unmask predispositions for future disease. This is particularly evident for women who develop pregnancy-related disorders, for example, pre-eclampsia and gestational diabetes or hypertension. Such pregnancy-related syndromes increase the risk for cardiovascular disease (CVD) postpartum. As a result, pregnancy has been termed as a cardiovascular stress test and an indicator or marker to predict the development of CVD later in life. In addition, pregnancy-related disorders impact the development of offspring also placing them at a higher risk for disease. Utilizing pregnancy as a physiological stressor, the current investigation sought to determine whether the cardiovascular system of offspring exposed to gestational hypertension in utero would respond adversely to the stress of pregnancy. Heterozygous atrial natriuretic peptide gene-disrupted (ANP+/-) offspring were generated by either crossing male wildtype ANP+/+ with female knockout ANP-/- to produce ANP+/-KO mice or crossing female wildtype ANP+/+ with male knockout ANP-/- to produce ANP+/-WT mice. To study the cardiovascular stress induced by pregnancy, female ANP+/-WT and ANP+/-KO mice were mated with male wildtype ANP+/+ mice to initiate pregnancy. Cardiac size and molecular expression of the renin-angiotensin (RAS) and natriuretic peptide systems (NPS) were compared between offspring groups. Our data demonstrate that gestational hypertension and lack of maternal ANP did not significantly impact the progression and regression of pregnancy-induced cardiac hypertrophy over gestation and postpartum in ANP+/- offspring. Additionally, the molecular cardiac expression of the RAS and NPS did not differ between offspring groups. Future investigation should assess potential differences in cardiac function and the impact of fetal-programming on offspring cardiovascular adaptations during pregnancy in more severe models of pregnancy-related hypertensive syndrome such as angiotensin II or isoproterenol infusion.


Assuntos
Fator Natriurético Atrial/deficiência , Cardiomegalia , Complicações Cardiovasculares na Gravidez , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Gravidez , Complicações Cardiovasculares na Gravidez/genética , Complicações Cardiovasculares na Gravidez/metabolismo , Complicações Cardiovasculares na Gravidez/patologia
13.
J Cereb Blood Flow Metab ; 37(5): 1571-1594, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27328690

RESUMO

A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.


Assuntos
Lesões Encefálicas/fisiopatologia , Córtex Cerebral/patologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Lesões Encefálicas/patologia , Córtex Cerebral/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Eletrocorticografia , Humanos
14.
J Cereb Blood Flow Metab ; 37(5): 1735-1747, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27381828

RESUMO

We examined in live coronal slices from rat and mouse which brain regions generate potassium-triggered spreading depolarization (SDKt). This technique simulates cortical spreading depression, which underlies migraine aura in the intact brain. An SDKt episode was evoked by increasing bath [K+]o and recorded as a propagating front of elevated light transmittance representing transient neuronal swelling in gray matter of neocortex, hippocampus, striatum, and thalamus. In contrast, SDKt was not imaged in hypothalamic nuclei or brainstem with exception of those nuclei near the dorsal brainstem surface. In rat slices, single neurons were whole-cell current clamped during SDKt. "Higher" neurons depolarized to near zero millivolts indicating SDKt generation. In contrast, seven types of neurons in hypothalamus and brainstem only slowly depolarized without generating SDKt, supporting our imaging findings. Therefore, SDKt is not a default of CNS neurons but rather displays a region-specific susceptibility, similar to anoxic depolarization, which we have proposed is correlated with a region's vulnerability to traumatic brain injury. In the higher brain, SDKt may be a vestigial spreading depolarization that originally evolved to shut down and vasoconstrict gray matter regions more exposed to impact and contusion.


Assuntos
Encéfalo/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Imagem Óptica , Cloreto de Potássio/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Meios de Cultura , Hipotálamo/diagnóstico por imagem , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
15.
J Neurophysiol ; 116(3): 1117-27, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334953

RESUMO

Spreading depolarization (SD) is generated in the central nervous systems of both vertebrates and invertebrates. SD manifests as a propagating wave of electrical depression caused by a massive redistribution of ions. Mammalian SD underlies a continuum of human pathologies from migraine to stroke damage, whereas insect SD is associated with environmental stress-induced neural shutdown. The general cellular mechanisms underlying SD seem to be evolutionarily conserved throughout the animal kingdom. In particular, SD in the central nervous system of Locusta migratoria and Drosophila melanogaster has all the hallmarks of mammalian SD. Locust SD is easily induced and monitored within the metathoracic ganglion (MTG) and can be modulated both pharmacologically and by preconditioning treatments. The finding that the fly brain supports repetitive waves of SD is relatively recent but noteworthy, since it provides a genetically tractable model system. Due to the human suffering caused by SD manifestations, elucidating control mechanisms that could ultimately attenuate brain susceptibility is essential. Here we review mechanisms of SD focusing on the similarities between mammalian and insect systems. Additionally we discuss advantages of using invertebrate model systems and propose insect SD as a valuable model for providing new insights to mammalian SD.


Assuntos
Sistema Nervoso Central/citologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Neurônios/fisiologia , Animais , Humanos , Insetos , Vertebrados
16.
J Comput Neurosci ; 40(2): 177-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26852334

RESUMO

The extent of anoxic depolarization (AD), the initial electrophysiological event during ischemia, determines the degree of brain region-specific neuronal damage. Neurons in higher brain regions exhibiting nonreversible, strong AD are more susceptible to ischemic injury as compared to cells in lower brain regions that exhibit reversible, weak AD. While the contrasting ADs in different brain regions in response to oxygen-glucose deprivation (OGD) is well established, the mechanism leading to such differences is not clear. Here we use computational modeling to elucidate the mechanism behind the brain region-specific recovery from AD. Our extended Hodgkin-Huxley (HH) framework consisting of neural spiking dynamics, processes of ion accumulation, and ion homeostatic mechanisms unveils that glial-vascular K(+) clearance and Na(+)/K(+)-exchange pumps are key to the cell's recovery from AD. Our phase space analysis reveals that the large extracellular space in the upper brain regions leads to impaired Na(+)/K(+)-exchange pumps so that they function at lower than normal capacity and are unable to bring the cell out of AD after oxygen and glucose is restored.


Assuntos
Espaço Extracelular/metabolismo , Isquemia/patologia , Modelos Neurológicos , Neurônios/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Glucose/deficiência , Humanos , Hipóxia , Dinâmica não Linear
17.
Biol Reprod ; 93(6): 142, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26536903

RESUMO

Pregnancy induces cardiovascular adaptations in response to increased volume overload. Aside from the hemodynamic changes that occur during pregnancy, the maternal heart also undergoes structural changes. However, cardiac modulation in pregnancies complicated by gestational hypertension is incompletely understood. The objectives of the current investigation were to determine the role of the natriuretic peptide (NP) system in pregnancy and to assess alterations in pregnancy-induced cardiac hypertrophy between gestationally hypertensive and normotensive dams. Previously we have shown that mice lacking the expression of atrial NP (ANP; ANP(-/-)) exhibit a gestational hypertensive phenotype. In the current study, female ANP(+/+) and ANP(-/-) mice were mated with ANP(+/+) males. Changes in cardiac size and weight were evaluated across pregnancy at Gestational Days 15.5 and 17.5 and Postnatal Days 7, 14, and 28. Nonpregnant mice were used as controls. Physical measurement recordings and histological analyses demonstrated peak cardiac hypertrophy occurring at 14 days postpartum in both ANP(+/+) and ANP(-/-) dams with little to no change during pregnancy. Additionally, left ventricular expression of the renin-angiotensin system (RAS) and NP system was quantified by real-time quantitative polymerase chain reaction. Up-regulation of Agt and AT(1a) genes was observed late in pregnancy, while Nppa and Nppb genes were significantly up-regulated postpartum. Our data suggest that pregnancy-induced cardiac hypertrophy may be influenced by the RAS throughout gestation and by the NP system postpartum. Further investigations are required to gain a complete understanding of the mechanistic aspects of pregnancy-induced cardiac hypertrophy.


Assuntos
Fator Natriurético Atrial/metabolismo , Pressão Sanguínea/fisiologia , Cardiomegalia/fisiopatologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Angiotensinas/genética , Angiotensinas/metabolismo , Animais , Fator Natriurético Atrial/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Feminino , Hipertensão Induzida pela Gravidez/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Regulação para Cima
18.
Mol Cell Biochem ; 408(1-2): 223-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169981

RESUMO

The maternal system is challenged with many physiological changes throughout pregnancy to prepare the body to meet the metabolic needs of the fetus and for delivery. Many pregnancies, however, are faced with pathological stressors or complications that significantly impact maternal health. A shift in this paradigm is now beginning to investigate the implication of pregnancy complications on the fetus and their continued influence on offspring disease risk into adulthood. In this investigation, we sought to determine whether maternal hypertension during pregnancy alters the cerebral response of adult offspring to acute ischemic stroke. Atrial natriuretic peptide gene-disrupted (ANP(-/-)) mothers exhibit chronic hypertension that escalates during pregnancy. Through comparison of heterozygote offspring born from either normotensive (ANP(+/-WT)) or hypertensive (ANP(+/-KO)) mothers, we have demonstrated that offspring exposed to maternal hypertension exhibit larger cerebral infarct volumes following middle cerebral artery occlusion. Observation of equal baseline cardiovascular measures, cerebrovascular structure, and cerebral blood volumes between heterozygote offspring suggests no added influences on offspring that would contribute to adverse cerebral response post-stroke. Cerebral mRNA expression of endothelin and nitric oxide synthase vasoactive systems demonstrated up-regulation of Et-1 and Nos3 in ANP(+/-KO) mice and thus an enhanced acute vascular response compared to ANP(+/-WT) counterparts. Gene expression of Na(+)/K(+) ATPase channel isoforms, Atp1a1, Atp1a3, and Atp1b1, displayed no significant differences. These investigations are the first to demonstrate a fetal programming effect between maternal hypertension and adult offspring stroke outcome. Further mechanistic studies are required to complement epidemiological evidence of this phenomenon in the literature.


Assuntos
Fator Natriurético Atrial/genética , Infarto Cerebral/patologia , Hipertensão Induzida pela Gravidez/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Filhos Adultos , Animais , Infarto Cerebral/etiologia , Infarto Cerebral/genética , Modelos Animais de Doenças , Endotelinas/genética , Feminino , Humanos , Camundongos , Óxido Nítrico Sintase/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética
19.
Mol Brain ; 8: 27, 2015 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25910195

RESUMO

BACKGROUND: The study of late-onset/age-related Alzheimer's disease (AD)(sporadic AD, 95% of AD cases) has been hampered by a paucity of animal models. Oxidative stress is considered a causative factor in late onset/age-related AD, and aldehyde dehydrogenase 2 (ALDH2) is important for the catabolism of toxic aldehydes associated with oxidative stress. One such toxic aldehyde, the lipid peroxidation product 4-hydroxynonenal (HNE), accumulates in AD brain and is associated with AD pathology. Given this linkage, we hypothesized that in mice lacking ALDH2, there would be increases in HNE and the appearance of AD-like pathological changes. RESULTS: Changes in relevant AD markers in Aldh2 (-/-) mice and their wildtype littermates were assessed over a 1 year period. Marked increases in HNE adducts arise in hippocampi from Aldh2 (-/-) mice, as well as age-related increases in amyloid-beta, p-tau, and activated caspases. Also observed were age-related decreases in pGSK3ß, PSD95, synaptophysin, CREB and pCREB. Age-related memory deficits in the novel object recognition and Y maze tasks begin at 3.5-4 months and are maximal at 6.5-7 months. There was decreased performance in the Morris Water Maze task in 6 month old Aldh2 (-/-) mice. These mice exhibited endothelial dysfunction, increased amyloid-beta in cerebral microvessels, decreases in carbachol-induced pCREB and pERK formation in hippocampal slices, and brain atrophy. These AD-associated pathological changes are rarely observed as a constellation in current AD animal models. CONCLUSIONS: We believe that this new model of age-related cognitive impairment will provide new insight into the pathogenesis and molecular/cellular mechanisms driving neurodegenerative diseases of aging such as AD, and will prove useful for assessing the efficacy of therapeutic agents for improving memory and for slowing, preventing, or reversing AD progression.


Assuntos
Envelhecimento/patologia , Aldeído Desidrogenase/deficiência , Doença de Alzheimer/complicações , Doença de Alzheimer/enzimologia , Transtornos Cognitivos/enzimologia , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial , Aldeídos/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Carbacol/farmacologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Immunoblotting , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/patologia , Neprilisina/metabolismo , Fosforilação/efeitos dos fármacos , Multimerização Proteica , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
20.
Mol Cell Biochem ; 399(1-2): 39-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25391363

RESUMO

Investigations regarding hypertension and dietary sodium, both factors that influence stroke risk, have previously been limited to using genetically disparate treatment and control groups, namely the stroke-prone, spontaneously hypertensive rat and Wistar-Kyoto rat. In this investigation, we have characterized and compared cerebral vasoactive system adaptations following stroke in genetically identical, salt-induced hypertensive, and normotensive control mice. Briefly, ANP(+/-) (C57BJ/6 × SV129 background) mice were fed chow containing either 0.8% NaCl (NS) or 8.0% NaCl (HS) for 7 weeks. Transient cerebral ischemia was induced by middle cerebral artery occlusion (MCAO). Infarct volumes were measured 24-h post-reperfusion and the mRNA expression of five major vasoactive systems was characterized using qPCR. Along with previous publications, our data validate a salt-induced hypertensive state in ANP(+/-) mice fed HS chow as they displayed left ventricular hypertrophy, increased systolic blood pressure, and increased urinary sodium excretion. Following MCAO, mice fed HS exhibited larger infarct volumes than their dietary counterparts. In addition, significant up-regulation in Et-1 and Nos3 mRNA expression in response to salt and stroke suggests implications with increased cerebral damage in this group. In conclusion, our data demonstrate increased cerebral susceptibility to stroke in salt-induced hypertensive mice. More importantly, however, we have characterized a novel method of investigating hypertension and stroke with the use of genetically identical treatment and control groups. This is the first investigation in which genetic confounding variables have been eliminated.


Assuntos
Circulação Cerebrovascular , Hipertensão/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Círculo Arterial do Cérebro/fisiopatologia , Feminino , Expressão Gênica , Hipertensão/etiologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica , Cloreto de Sódio na Dieta/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...