Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259398

RESUMO

Previous studies have described RT-LAMP methodology for the rapid detection of SARS-CoV-2 in nasopharyngeal (NP) and oropharyngeal (OP) swab and saliva samples. This study describes the validation of an improved sample preparation method for extraction free RT-LAMP and defines the clinical performance of four different RT-LAMP assay formats for detection of SARS-CoV-2 within a multisite clinical evaluation. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva from asymptomatic and symptomatic individuals across healthcare and community settings. For Direct RT-LAMP, overall diagnostic sensitivity (DSe) of 70.35% (95% CI 63.48-76.60%) on swabs and 84.62% (79.50-88.88%) on saliva was observed, with diagnostic specificity (DSp) of 100% (98.98-100.00%) on swabs and 100% (99.72-100.00%) on saliva when compared to RT-qPCR; analysing samples with RT-qPCR ORF1ab CT values of [≤]25 and [≤]33, DSe of 100% (96.34-100%) and 77.78% (70.99-83.62%) for swabs were observed, and 99.01% (94.61-99.97%) and 87.61% (82.69-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and DSp were 96.06% (92.88-98.12%) and 99.99% (99.95-100%) for swabs, and 80.65% (73.54-86.54%) and 99.99% (99.95-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use-cases, including frequent, interval-based testing of saliva with Direct RT-LAMP from asymptomatic individuals that may otherwise be missed using symptomatic testing alone.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250934

RESUMO

IntroductionFaecal transplantation is an evidence based treatment for Clostridiodes difficile. Patients infected with SARS-CoV-2 have been shown to shed the virus in stool for up to 33 days, well beyond the average clearance time for upper respiratory tract shedding. We carried out an analytical and clinical validation of reverse-transcriptase quantitative (RT-qPCR) as well as LAMP, LamPORE and droplet digital PCR in the detection of SARS-CoV-2 RNA in stool from donated samples for FMT, spiked samples and asymptomatic inpatients in an acute surgical unit. MethodsKilled SARS-CoV-2 viral lysate and extracted RNA was spiked into donor stool & FMT and a linear dilution series from 10-1 to 10-5 and tested via RT-qPCR, LAMP, LamPORE and ddPCR against SARS-CoV-2. Patients admitted to the critical care unit with symptomatic SARS-CoV-2 and sequential asymptomatic patients from acute presentation to an acute surgical unit were also tested. ResultsIn a linear dilution series, detection of the lowest dilution series was found to be 8 copies per microlitre of sample. Spiked lysate samples down to 10-2 dilution were detected in FMT samples using RTQPCR, LamPORE and ddPCR and down to 10-1 with LAMP. In symptomatic patients 5/12 had detectable SARS-CoV-2 in stool via RT-qPCR and 6/12 via LamPORE, and in 1/97 asymptomatic patients via RT-qPCR. ConclusionsRT-qPCR can be detected in FMT donor samples using RT-qPCR, LamPORE and ddPCR to low levels using validated pathways. As previously demonstrated, nearly half of symptomatic and less than one percent of asymptomatic patients had detectable SARS-CoV-2 in stool.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248236

RESUMO

We report a rapid isothermal method for detecting SARS-CoV-2, the virus responsible for COVID-19. The procedure uses a novel reverse transcriptase-free (RTF) approach for converting RNA into DNA, which triggers a rapid amplification using the Exponential Amplification Reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection of a sample of patient SARS-CoV-2 RNA in under 5 minutes.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20237784

RESUMO

Lateral flow devices are quickly being implemented for use in large scale population surveillance programs for SARS-CoV-2 infection in the United Kingdom. These programs have been piloted in city wide screening in the city of Liverpool, and are now being rolled out to support care home visits and the return home of University students for the Christmas break. Here we present data on the performance of Lateral Flow devices to test almost 8,000 students at the University of Birmingham between December 2nd and December 9th 2020. The performance is validated against almost 800 samples using PCR performed in the University Pillar 2 testing lab, and theoretically validated on thousands of Pillar 2 PCR testing results performed on low-prevalence care home testing samples. Our data shows that Lateral Flow Devices do not detect infections presenting with PCR Ct values over 29-30, meaning that only 3.2% (95% CI 0.6% to 15.6%) of total cases in the student population were detected, but that as many of 85% of cases tested in the Pillar 2 PCR lab would have been detected theoretically

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248834

RESUMO

Birmingham University Turnkey laboratory is part of the Lighthouse network responsible for testing clinical samples under the UK government Test & Trace scheme. Samples are analysed for the presence of SARS-CoV-2 in respiratory samples using the Thermofisher TaqPath RT-QPCR test, which is designed to co-amplify sections of three SARS-CoV-2 viral genes. Since more recent information became available regarding the presence of SARS-CoV-2 variants of concern (S-VoC), which can show a suboptimal profile in RT-QPCR tests such as the ThermoFisher TaqPath used at the majority of Lighthouse laboratories, we analysed recently published data for trends and significance of the S-gene dropout variant. Results showed that: O_LIthe population of S-gene dropout samples had significantly lower median Ct values of ORF and N-gene targets compared to samples where S-gene was detected C_LIO_LIon a population basis, S-gene dropout samples clustered around very low Ct values for ORF and N targets C_LIO_LIlinked Ct values for individual samples showed that a low Ct for ORF and N were clearly associated with an S-dropout characteristic C_LIO_LIwhen conservatively inferring relative viral load from Ct values, approximately 35% of S-dropout samples had high viral loads between 10 and 10,000-fold greater than 1 x 106, compared to 10% of S-positive samples. C_LI This analysis suggests that patients whose samples exhibit the S-dropout profile in the TaqPath test are more likely to have high viral loads at the time of sampling. The relevance of this to epidemiological reports of fast spread of the SARS-CoV-2 in regions of the UK is discussed.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247031

RESUMO

IntroductionRapid, high throughput diagnostics are a valuable tool, allowing the detection of SARS-CoV-2 in populations, in order to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as reverse transcriptase quantitative PCR (RT-qPCR), particularly throughout the first months of the COVID-19 pandemic. We investigated the use of LamPORE, where loop mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. MethodsIn an asymptomatic prospective cohort, for three weeks in September 2020 health care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza like illness from March 2020 - June 2020, were similarly tested from nasopharyngeal swabs. ResultsIn the asymptomatic cohort a total of 1200 participants supplied 23,427 samples (3,966 swab, 19,461 saliva) over a three-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% in both swab and saliva asymptomatic samples when compared to the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. ConclusionsLamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20105197

RESUMO

BackgroundThe correlates of protection against SARS-CoV-2 and their longevity remain unclear. Studies in severely ill individuals have identified robust cellular and humoral immune responses against the virus. Asymptomatic infection with SARS-CoV-2 has also been described, but it is unknown whether this is sufficient to produce antibody responses. MethodsWe performed a cross-sectional study recruiting 554 health care workers from University Hospitals Birmingham NHS Foundation Trust who were at work and asymptomatic. Participants were tested for current infection with SARS-CoV-2 by nasopharyngeal swab for real-time polymerase chain reaction and for seroconversion by the measurement of anti-SARS-CoV-2 spike glycoprotein antibodies by enzyme linked immunosorbent assay. Results were interpreted in the context of previous, self-reported symptoms of illness consistent with COVID-19. ResultsThe point prevalence of infection with SARS-CoV-2, determined by the detection of SARS-CoV-2 RNA on nasopharnygeal swab was 2.39% (n=13/544). Serum was available on 516 participants. The overall rate of seroconversion in the cohort was 24.4% (n=126/516). Individuals who had previously experienced a symptomatic illness consistent with COVID-19 had significantly greater seroconversion rates than those who had remained asymptomatic (37.5% vs 17.1%, {chi}2 =21.1034, p<0.0001). In the week preceding peak COVID-19-related mortality at UHBFT, seroconversion rates amongst those who were suffering from symptomatic illnesses peaked at 77.8%. Prior symptomatic illness generated quantitatively higher antibody responses than asymptomatic seroconversion. Seroconversion rates were highest amongst those working in housekeeping (34.5%), acute medicine (33.3%) and general internal medicine (30.3%) with lower rates observed in participants working in intensive care (14.8%) and emergency medicine (13.3%). ConclusionsIn a large cross-sectional seroprevalence study of health-care workers, we demonstrate that asymptomatic seroconversion occurs, however prior symptomatic illness is associated with quantitatively higher antibody responses. The identification that the potential for seroconversion in health-care workers can associate differentially with certain hospital departments may inform future infection control and occupational health practices. Research in contextO_ST_ABSEvidence before the studyC_ST_ABSTo date, no study has examined the cross-sectional seroprevalence of anti-SARS-CoV-2 antibodies in health care workers during the COVID-19 pandemic. Existing evidence suggests that the levels of SARS-CoV-2 antibodies developing following infection may vary with disease severity in keeping with previous coronavirus pandemics. Added value of this studyWe demonstrate that seroconversion can occur in health care workers who have suffered no previous symptoms of SARS-Cov-2 infection. However, prior symptomatic infection tends to drive quantitatively superior antibody responses against the virus. We observed differential seroconversion rates in individuals working within different hospital departments. Using intensive care as a reference, the relative risk for seroconversion was greatest for those working in housekeeping, acute and general internal medicine. Implications of all the available evidenceInsight into the current seroprevalence of SARS-CoV-2 antibodies within a high-risk cohort of health-care workers is of direct relevance as a reference point for future community serological surveys. We provide further evidence of asymptomatic infection and seroconversion, strengthening the argument for regular, routine screening of health-care workers. Finally, we provide evidence that individuals working in particular roles within the NHS are at greater risk of seroconversion with significant implications for their occupational health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...