Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474152

RESUMO

Although efficacious vaccines have significantly reduced the morbidity and mortality due to COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of two highly potently neutralizing mAbs (THSC20.HVTR04 and THSC20.HVTR26) from an Indian convalescent donor, that neutralize SARS-CoV-2 VOCs at picomolar concentrations including the delta variant (B.1.617.2). These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein thereby preventing the virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness. HighlightsO_LIIdentification of an Indian convalescent donor prior to emergence of SARS-CoV-2 Delta variant whose plasma demonstrated neutralization breadth across SARS-CoV-2 variants of concern (VOCs). C_LIO_LITwo (THSC20.HVTR04 and THSC20.HVTR26) monoclonal antibodies isolated from peripheral memory B cells potently neutralize SARS-CoV-2 VOCs: Alpha, Beta, Gamma, Delta and VOIs: Kappa and Delta Plus. C_LIO_LITHSC20.HVTR04 and THSC20.HVTR26 target non-competing epitopes on the receptor binding domain (RBD) and represent distinct germline lineages. C_LIO_LIPassive transfer of THSC20.HVTR04 and THSC20.HVTR26 mAbs demonstrated protection against Delta virus challenge in K18-hACE2 mice at low antibody doses. C_LI Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=142 SRC="FIGDIR/small/474152v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): org.highwire.dtl.DTLVardef@1f1b55corg.highwire.dtl.DTLVardef@1b9b438org.highwire.dtl.DTLVardef@e6d2a6org.highwire.dtl.DTLVardef@f92cd_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264137

RESUMO

IntroductionInfection with SARS-CoV-2 is typically compared with influenza to contextualize its health risks. SARS-CoV-2 has been linked with coagulation disturbances including arterial thrombosis, leading to considerable interest in antithrombotic therapy for Coronavirus Disease 2019 (COVID-19). However, the independent thromboembolic risk of SARS-CoV-2 infection compared with influenza remains incompletely understood. We evaluated the adjusted risks of thromboembolic events after a diagnosis of COVID-19 compared with influenza in a large retrospective cohort. MethodsWe used a US-based electronic health record (EHR) dataset linked with insurance claims to identify adults diagnosed with COVID-19 between April 1, 2020 and October 31, 2020. We identified influenza patients diagnosed between October 1, 2018 and April 31, 2019. Primary outcomes [venous composite of pulmonary embolism (PE) and acute deep vein thrombosis (DVT); arterial composite of ischemic stroke and myocardial infarction (MI)] and secondary outcomes were assessed 90 days post-diagnosis. Propensity scores (PS) were calculated using demographic, clinical, and medication variables. PS-adjusted hazard ratios (HRs) were calculated using Cox proportional hazards regression. ResultsThere were 417,975 COVID-19 patients (median age 57y, 61% women), and 345,934 influenza patients (median age 47y, 66% women). Compared with influenza, patients with COVID-19 had higher venous thromboembolic risk (HR 1.53, 95% CI 1.38-1.70), but not arterial thromboembolic risk (HR 1.02, 95% CI 0.95-1.10). Secondary analyses demonstrated similar risk for ischemic stroke (HR 1.11, 95% CI 0.98-1.25) and MI (HR 0.93, 95% CI 0.85-1.03) and higher risk for DVT (HR 1.36, 95% CI 1.19-1.56) and PE (HR 1.82, 95% CI 1.57-2.10) in patients with COVID-19. ConclusionIn a large retrospective US cohort, COVID-19 was independently associated with higher 90-day risk for venous thrombosis, but not arterial thrombosis, as compared with influenza. These findings may inform crucial knowledge gaps regarding the specific thromboembolic risks of COVID-19.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436684

RESUMO

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterized 198 antibodies isolated from four COVID19+ subjects and identified 14 SARS-CoV-2 neutralizing antibodies. One targeted the NTD, one recognized an epitope in S2 and twelve bound the RBD. Three anti-RBD neutralizing antibodies cross-neutralized SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency rather than the antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. The anti-S2 antibody also neutralized SARS-CoV-1 and all four cross-neutralizing antibodies neutralized the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-282558

RESUMO

Receptor binding studies using recombinant SARS-CoV proteins have been hampered due to challenges in approaches creating spike protein or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric RBD proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric fully glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that fully glycosylated trimeric RBD proteins are attractive to analyze receptor binding and explore ACE2 expression profiles in tissues.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-088716

RESUMO

The rapid spread of SARS-CoV-2 has a significant impact on global health, travel and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated neutralizing antibodies from convalescent COVID-19 patients using a SARS-CoV-2 stabilized prefusion spike protein. Several of these antibodies were able to potently inhibit live SARS-CoV-2 infection at concentrations as low as 0.007 {micro}g/mL, making them the most potent human SARS-CoV-2 antibodies described to date. Mapping studies revealed that the SARS-CoV-2 spike protein contained multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as previously undefined non-RBD epitopes. In addition to providing guidance for vaccine design, these mAbs are promising candidates for treatment and prevention of COVID-19.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-955195

RESUMO

Porcine epidemic diarrhea virus is an alphacoronavirus responsible for significant morbidity and mortality in pigs. A key determinant of viral tropism and entry, the PEDV spike protein is a key target for the host antibody response and a good candidate for a protein-based vaccine immunogen. We used electron microscopy to evaluate the PEDV spike structure, as well as pig polyclonal antibody responses to viral infection. The structure of the PEDV spike reveals a configuration similar to that of HuCoV-NL63. Several PEDV protein-protein interfaces are mediated by non-protein components including a glycan at Asn264 and two bound palmitoleic acid molecules. The polyclonal antibody response to PEDV infection shows a dominance of epitopes in the S1 region. This structural and immune characterization provides new insights into coronavirus spike stability determinants and explores the immune landscape of viral spike proteins.

7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951889

RESUMO

Objective: To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS). Methods: 3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G. mangostana Linn. (pericarp) at the concentrations of 12μg/mL (IC

8.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-343206

RESUMO

<p><b>OBJECTIVE</b>To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS).</p><p><b>METHODS</b>3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G. mangostana Linn. (pericarp) at the concentrations of 12µg/mL (IC50 level: concentration that inhibits parasite growth by 50%) and 30 µg/mL (IC90 level: concentration that inhibits parasite growth by 90%) for 12 h. Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.</p><p><b>RESULTS</b>At the IC50 concentration, about 82% of the expressed parasite proteins were matched with the control (non-exposed), while at the IC90 concentration, only 15% matched proteins were found. The selected protein spots from parasite exposed to the plant extract at the concentration of 12 µg/mL were identified as enzymes that play role in glycolysis pathway, i.e., phosphoglycerate mutase putative, L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase, and fructose-bisphosphate aldolase/phosphoglycerate kinase. The proteosome was found in parasite exposed to 30 µg/mL of the extract.</p><p><b>CONCLUSIONS</b>Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G. mangostana Linn. (pericarp).</p>

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...