Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 376(6591): 346-347, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446648

RESUMO

Removing membrane pores may help cancer cells survive T cell assault.

2.
Front Cell Infect Microbiol ; 12: 824494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186797

RESUMO

Although macrophages have long been considered key players in the course of Leishmania infections, other non-professional phagocytes have lately been shown to maintain low levels of the parasite in safe intracellular niches. Recently, it was demonstrated that the adipose tissue is capable of harboring Old World L. (L.) infantum in mice. However, there is no evidence of experimental adipocyte infection with New World Leishmania species so far. In addition, it was not known whether adipocytes would be permissive for formation of the unique, large and communal parasitophorous vacuoles that are typical of L. (L.) amazonensis in macrophages. Here we evaluated the ability of L. (L.) amazonensis and L. (V.) braziliensis promastigotes and amastigotes to infect 3T3-L1 fibroblast-derived adipocytes (3T3-Ad) using light and transmission electron microscopy. Our results indicate that amastigotes and promastigotes of both species were capable of infecting and surviving inside pre- and fully differentiated 3T3-Ad for up to 144 h. Importantly, L. (L.) amazonensis amastigotes resided in large communal parasitophorous vacuoles in pre-adipocytes, which appeared to be compressed between large lipid droplets in mature adipocytes. In parallel, individual L. (V.) braziliensis amastigotes were detected in single vacuoles 144 h post-infection. We conclude that 3T3-Ad may constitute an environment that supports low loads of viable parasites perhaps contributing to parasite maintenance, since amastigotes of both species recovered from these cells differentiated into replicative promastigotes. Our findings shed light on the potential of a new host cell model that can be relevant to the persistence of New World Leishmania species.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose , Células 3T3-L1 , Adipócitos , Animais , Leishmaniose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C
3.
Elife ; 102021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704555

RESUMO

B-cell receptor (BCR)-mediated antigen internalization and presentation are essential for humoral memory immune responses. Antigen encountered by B-cells is often tightly associated with the surface of pathogens and/or antigen-presenting cells. Internalization of such antigens requires myosin-mediated traction forces and extracellular release of lysosomal enzymes, but the mechanism triggering lysosomal exocytosis is unknown. Here, we show that BCR-mediated recognition of antigen tethered to beads, to planar lipid-bilayers or expressed on cell surfaces causes localized plasma membrane (PM) permeabilization, a process that requires BCR signaling and non-muscle myosin II activity. B-cell permeabilization triggers PM repair responses involving lysosomal exocytosis, and B-cells permeabilized by surface-associated antigen internalize more antigen than cells that remain intact. Higher affinity antigens cause more B-cell permeabilization and lysosomal exocytosis and are more efficiently presented to T-cells. Thus, PM permeabilization by surface-associated antigen triggers a lysosome-mediated B-cell resealing response, providing the extracellular hydrolases that facilitate antigen internalization and presentation.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Superfície , Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Membrana Celular , Exocitose , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Permeabilidade
4.
PLoS Negl Trop Dis ; 14(10): e0008091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017394

RESUMO

Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable assemblies involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) complex and the tRNASec-specific elongation factor (eEFSec) complex. Endoplasmic reticulum stress with dithiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Furthermore, selenoprotein T (SELENOT) was dispensable for both forms of the parasite. Together, our data suggest a role for the T. brucei selenophosphate synthetase in the regulation of the parasite's ER stress response.


Assuntos
Liases/metabolismo , Fosfotransferases/metabolismo , Selenocisteína/biossíntese , Selenoproteínas/metabolismo , Trypanosoma brucei brucei/enzimologia , Conformação Proteica , Proteínas de Protozoários/metabolismo , Selênio/metabolismo
5.
J Cell Sci ; 134(5)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093240

RESUMO

Endocytosis of caveolae has previously been implicated in the repair of plasma membrane wounds. Here, we show that caveolin-1-deficient fibroblasts lacking caveolae upregulate a tubular endocytic pathway and have a reduced capacity to reseal after permeabilization with pore-forming toxins compared with wild-type cells. Silencing endophilin-A2 expression inhibited fission of endocytic tubules and further reduced plasma membrane repair in cells lacking caveolin-1, supporting a role for tubular endocytosis as an alternative pathway for the removal of membrane lesions. Endophilin-A2 was visualized in association with cholera toxin B-containing endosomes and was recruited to recently formed intracellular vacuoles containing Trypanosoma cruzi, a parasite that utilizes the plasma membrane wounding repair pathway to invade host cells. Endophilin-A2 deficiency inhibited T. cruzi invasion, and fibroblasts deficient in both caveolin-1 and endophilin-A2 did not survive prolonged exposure to the parasites. These findings reveal a novel crosstalk between caveolin-1 and endophilin-A2 in the regulation of clathrin-independent endocytosis and plasma membrane repair, a process that is subverted by T. cruzi parasites for cell invasion.


Assuntos
Aciltransferases/fisiologia , Membrana Celular , Endocitose , Trypanosoma cruzi , Células 3T3 , Animais , Cavéolas , Clatrina , Camundongos
6.
Nat Microbiol ; 5(7): 881-882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32587375
7.
PLoS Negl Trop Dis, v. 14, n. 10, p. e0008091, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3266

RESUMO

Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable assemblies involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) complex and the tRNASec-specific elongation factor (eEFSec) complex. Endoplasmic reticulum stress with dithiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Furthermore, selenoprotein T (SELENOT) was dispensable for both forms of the parasite. Together, our data suggest a role for the T. brucei selenophosphate synthetase in the regulation of the parasite’s ER stress response.

8.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527128

RESUMO

The molecular mechanisms underlying biological differences between two Leishmania species that cause cutaneous disease, L. major and L. amazonensis, are poorly understood. In L. amazonensis, reactive oxygen species (ROS) signaling drives differentiation of nonvirulent promastigotes into forms capable of infecting host macrophages. Tight spatial and temporal regulation of H2O2 is key to this signaling mechanism, suggesting a role for ascorbate-dependent peroxidase (APX), which degrades mitochondrial H2O2 Earlier studies showed that APX-null L. major parasites are viable, accumulate higher levels of H2O2, generate a greater yield of infective metacyclic promastigotes, and have increased virulence. In contrast, we found that in L. amazonensis, the ROS-inducible APX is essential for survival of all life cycle stages. APX-null promastigotes could not be generated, and parasites carrying a single APX allele were impaired in their ability to infect macrophages and induce cutaneous lesions in mice. Similar to what was reported for L. major, APX depletion in L. amazonensis enhanced differentiation of metacyclic promastigotes and amastigotes, but the parasites failed to replicate after infecting macrophages. APX expression restored APX single-knockout infectivity, while expression of catalytically inactive APX drastically reduced virulence. APX overexpression in wild-type promastigotes reduced metacyclogenesis, but enhanced intracellular survival following macrophage infection or inoculation into mice. Collectively, our data support a role for APX-regulated mitochondrial H2O2 in promoting differentiation of virulent forms in both L. major and L. amazonensis Our results also uncover a unique requirement for APX-mediated control of ROS levels for survival and successful intracellular replication of L. amazonensis.


Assuntos
Ascorbato Peroxidases/metabolismo , Leishmania major/patogenicidade , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Ascorbato Peroxidases/genética , Células Cultivadas , Leishmania major/genética , Leishmania major/metabolismo , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Virulência
9.
Cell Microbiol ; 21(11): e13065, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31155842

RESUMO

Acid sphingomyelinase (ASM) is a lysosomal enzyme that cleaves the phosphorylcholine head group of sphingomyelin, generating ceramide. Recessive mutations in SMPD1, the gene encoding ASM, cause Niemann-Pick Disease Types A and B. These disorders are attributed not only to lipid accumulation inside lysosomes but also to changes on the outer leaflet of the plasma membrane, highlighting an extracellular role for ASM. Secretion of ASM occurs under physiological conditions, and earlier studies proposed two forms of the enzyme, one resident in lysosomes and another form that would be diverted to the secretory pathway. Such differential intracellular trafficking has been difficult to explain because there is only one SMPD1 transcript that generates an active enzyme, found primarily inside lysosomes. Unexpectedly, studies of cell invasion by the protozoan parasite Trypanosoma cruzi revealed that conventional lysosomes can fuse with the plasma membrane in response to elevations in intracellular Ca2+ , releasing their contents extracellularly. ASM exocytosed from lysosomes remodels the outer leaflet of the plasma membrane, promoting parasite invasion and wound repair. Here, we discuss the possibility that ASM release during lysosomal exocytosis, in response to various forms of stress, may represent a major source of the secretory form of this enzyme.


Assuntos
Membrana Celular/parasitologia , Lisossomos/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Trypanosoma cruzi/patogenicidade , Animais , Secreções Corporais/efeitos da radiação , Cálcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Ceramidas/metabolismo , Exocitose , Humanos , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo A/enzimologia , Doença de Niemann-Pick Tipo B/enzimologia , Transporte Proteico , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo , Trypanosoma cruzi/metabolismo
10.
Int J Parasitol ; 49(6): 423-427, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30910463

RESUMO

The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.


Assuntos
Proteína 1 Reguladora do Ferro/metabolismo , Ferro/metabolismo , Leishmania/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Animais , Ferritinas/farmacologia , Técnicas de Inativação de Genes , Deficiências de Ferro , Leishmania/genética , Leishmania/patogenicidade , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Virulência
11.
PLoS Pathog ; 14(6): e1007140, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906288

RESUMO

Iron is essential for many cellular processes, but can generate highly toxic hydroxyl radicals in the presence of oxygen. Therefore, intracellular iron accumulation must be tightly regulated, by balancing uptake with storage or export. Iron uptake in Leishmania is mediated by the coordinated action of two plasma membrane proteins, the ferric iron reductase LFR1 and the ferrous iron transporter LIT1. However, how these parasites regulate their cytosolic iron concentration to prevent toxicity remains unknown. Here we characterize Leishmania Iron Regulator 1 (LIR1), an iron responsive protein with similarity to membrane transporters of the major facilitator superfamily (MFS) and plant nodulin-like proteins. LIR1 localizes on the plasma membrane of L. amazonensis promastigotes and intracellular amastigotes. After heterologous expression in Arabidopsis thaliana, LIR1 decreases the iron content of leaves and worsens the chlorotic phenotype of plants lacking the iron importer IRT1. Consistent with a role in iron efflux, LIR1 deficiency does not affect iron uptake by L. amazonensis but significantly increases the amount of iron retained intracellularly in the parasites. LIR1 null parasites are more sensitive to iron toxicity and have drastically impaired infectivity, phenotypes that are reversed by LIR1 complementation. We conclude that LIR1 functions as a plasma membrane iron exporter with a critical role in maintaining iron homeostasis and promoting infectivity in L. amazonensis.


Assuntos
Membrana Celular/metabolismo , Ferro/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/prevenção & controle , Proteínas de Protozoários/metabolismo , Virulência/efeitos dos fármacos , Animais , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/parasitologia , Transporte Biológico , Células Cultivadas , Feminino , Homeostase , Ferro/toxicidade , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética
12.
Curr Biol ; 28(8): R392-R397, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29689221

RESUMO

Tissue wound repair has been studied extensively. It involves the coordinated activation of several intracellular and intercellular pathways, as well as remodeling from the sequential recruitment of different cell types to the wound site. There is, however, an equally important process that happens at the single cell level, when the integrity of the plasma membrane is compromised. Individual eukaryotic cells can rapidly repair their plasma membrane after injury, through a process that restores internal homeostasis and prevents cell death. Despite its importance, investigations of this fascinating mechanism have been limited. Only recently have we begun to understand that plasma-membrane repair resembles tissue healing, in the sense that it also involves sequential, highly localized remodeling steps that ultimately eliminate all traces of the injury.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/fisiologia , Exocitose/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Homeostase/fisiologia , Humanos , Cicatrização/fisiologia
13.
J Vis Exp ; (133)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29608175

RESUMO

The lifecycle of Leishmania, the causative agent of leishmaniasis, alternates between promastigote and amastigote stages inside the insect and vertebrate hosts, respectively. While pathogenic symptoms of leishmaniasis can vary widely, from benign cutaneous lesions to highly fatal visceral disease forms depending on the infective species, all Leishmania species reside inside host macrophages during the vertebrate stage of their lifecycle. Leishmania infectivity is therefore directly related to its ability to invade, survive and replicate within parasitophorous vacuoles (PVs) inside macrophages. Thus, assessing the parasite's ability to replicate intracellularly serves as a dependable method for determining virulence. Studying leishmaniasis development using animal models is time-consuming, tedious and often difficult, particularly with the pathogenically important visceral forms. We describe here a methodology to follow the intracellular development of Leishmania in bone marrow-derived macrophages (BMMs). Intracellular parasite numbers are determined at 24 h intervals for 72 - 96 h following infection. This method allows for a reliable determination of the effects of various genetic factors on Leishmania virulence. As an example, we show how a single allele deletion of the Leishmania Mitochondrial Iron Transporter gene (LMIT1) impairs the ability of the Leishmania amazonensis mutant strain LMIT1/ΔLmit1 to grow inside BMMs, reflecting a drastic reduction in virulence compared to wild-type. This assay also allows precise control of experimental conditions, which can be individually manipulated to analyze the influence of various factors (nutrients, reactive oxygen species, etc.) on the host-pathogen interaction. Therefore, the appropriate execution and quantification of BMM infection studies provide a non-invasive, rapid, economical, safe and reliable alternative to conventional animal model studies.


Assuntos
Leishmania/crescimento & desenvolvimento , Leishmania/patogenicidade , Leishmaniose/parasitologia , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Virulência
14.
Hum Mol Genet ; 27(5): 811-822, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301038

RESUMO

Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid ß-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/ß catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3ß inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/ß catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.


Assuntos
Doença de Gaucher/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Lisossomos/patologia , Osteoblastos/patologia , Matriz Óssea/patologia , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Exocitose/genética , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Lisossomos/genética , Mutação , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Via de Sinalização Wnt , beta Catenina/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31093331

RESUMO

Leishmania virulence and disease development critically depends on the ability of Leishmania promastigotes to infect, differentiate into amastigote forms and replicate inside mammalian host macrophages. Understanding changes associated with amastigote differentiation in axenic culture conditions is key to identifying virulence factors. Here we compared efficiency of the conventional pH-temperature-dependent shift method to induce amastigote differentiation with the recently identified trigger for differentiation mediated by mitochondrial reactive oxygen species (ROS). Using two different visceral leishmaniasis species, L. infantum and. L. donovani, we show that ROS-generating methods such as iron deprivation or exposure to sub-lethal concentrations of H2O2 or menadione are significantly more effective in promoting promastigoteamastigote differentiation than the low pH-high temperature shift, leading to higher survival rates, morphological changes and gene expression patterns characteristic of the amastigote stage. Notably, both H2O2 and menadione-mediated differentiation did not require up-regulation of the mitochondrial electron transport chain (ETC)-associated protein p27, suggesting that treatment with oxidants bypasses the necessity to upregulate mitochondrial activity, a precondition for mROS generation. Our findings confirm that ROS-induced differentiation occurs in multiple Leishmania species, including the medically important visceralizing species, and provide mechanistic rationale for earlier reports demonstrating markedly increased virulence of L. infantum promastigotes pre-treated with oxidative reagents.

16.
Methods Mol Biol ; 1594: 205-211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28456985

RESUMO

Elevation in the cytosolic Ca2+ concentration triggers exocytosis of lysosomes in many cell types. This chapter describes a method to detect lysosomal exocytosis in mammalian cells, which takes advantage of the presence of an abundant glycoprotein, Lamp1, on the membrane of lysosomes. Lamp1 is a transmembrane protein with a large, heavily glycosylated region that faces the lumen of lysosomes. When lysosomes fuse with the plasma membrane, epitopes present on the luminal domain of Lamp1 are exposed on the cell surface. The Lamp1 luminal epitopes can then be detected on the surface of live, unfixed cells using highly specific monoclonal antibodies and fluorescence microscopy. The main advantage of this method is its sensitivity, and the fact that it provides spatial information on lysosomal exocytosis at the single cell level.


Assuntos
Lisossomos/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Epitopos/análise , Exocitose/genética , Exocitose/fisiologia , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo
17.
J Biol Chem ; 292(29): 12324-12338, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28550086

RESUMO

Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.


Assuntos
Ferro/metabolismo , Leishmania mexicana/enzimologia , Mitocôndrias/enzimologia , Proteínas de Protozoários/metabolismo , Superóxido Dismutase/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/parasitologia , Células da Medula Óssea/patologia , Linhagem Celular , Células Cultivadas , Células Clonais , Feminino , Técnicas de Inativação de Genes , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/patogenicidade , Leishmania mexicana/ultraestrutura , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Carga Parasitária , Transporte Proteico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Interferência de RNA , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Virulência
18.
Cell Microbiol ; 19(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27641840

RESUMO

Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions.


Assuntos
Actinas/metabolismo , Movimento Celular , Leishmania mexicana/patogenicidade , Macrófagos/fisiologia , Macrófagos/parasitologia , Proteína-Tirosina Quinases de Adesão Focal/análise , Macrófagos/química , Paxilina/análise
19.
JCI Insight ; 1(17): e86330, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27777970

RESUMO

Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7.


Assuntos
Reabsorção Óssea , Lisossomos/fisiologia , Osteoclastos/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Diferenciação Celular , Células Cultivadas , Endossomos , Deleção de Genes , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte Vesicular/genética , proteínas de unión al GTP Rab7
20.
PLoS One ; 11(3): e0152583, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028538

RESUMO

Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.


Assuntos
Catepsinas/metabolismo , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Lisossomos/enzimologia , Proteólise , Cálcio/metabolismo , Células HeLa , Humanos , Esfingomielina Fosfodiesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...