Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1213456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546266

RESUMO

Introduction: Iron (Fe) toxicity is a widespread nutritional disorder in lowland rice causing growth retardation and leaf symptoms referred to as leaf bronzing. It is partly caused by an imbalance of nutrients other than Fe and supply of these is known to mitigate the toxicity. But the physiological and molecular mechanisms involved are unknown. Methods: We investigated the effect of magnesium (Mg) on Fe toxicity tolerance in a field study in the Central Highlands of Madagascar and in hydroponic experiments with excess Fe (300 mg Fe L-1). An RNA-seq analysis was conducted in a hydroponic experiment to elucidate possible mechanisms underlying Mg effects. Results and discussion: Addition of Mg consistently decreased leaf bronzing under both field and hydroponic conditions, whereas potassium (K) addition caused minor effects. Plants treated with Mg tended to have smaller shoot Fe concentrations in the field, suggesting enhanced exclusion at the whole-plant level. However, analysis of multiple genotypes showed that Fe toxicity symptoms were also mitigated without a concomitant decrease of Fe concentration, suggesting that increased Mg supply confers tolerance at the tissue level. The hydroponic experiments also suggested that Mg mitigated leaf bronzing without significantly decreasing Fe concentration or oxidative stress as assessed by the content of malondialdehyde, a biomarker for oxidative stress. An RNA-seq analysis revealed that Mg induced more changes in leaves than roots. Subsequent cis-element analysis suggested that NAC transcription factor binding sites were enriched in genes induced by Fe toxicity in leaves. Addition of Mg caused non-significant enrichment of the same binding sites, suggesting that NAC family proteins may mediate the effect of Mg. This study provides clues for mitigating Fe toxicity-induced leaf bronzing in rice.

2.
Front Nutr ; 3: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379240

RESUMO

Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using (32)P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg(-1).We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA