Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232729

RESUMO

ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.


Assuntos
Protease La , Proteases Dependentes de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/metabolismo , Protease La/genética , Protease La/metabolismo , Proteoma/metabolismo
2.
FEBS Open Bio ; 9(9): 1536-1551, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237118

RESUMO

LonA proteases and ClpB chaperones are key components of the protein quality control system in bacterial cells. LonA proteases form a unique family of ATPases associated with diverse cellular activities (AAA+ ) proteins due to the presence of an unusual N-terminal region comprised of two domains: a ß-structured N domain and an α-helical domain, including the coiled-coil fragment, which is referred to as HI(CC). The arrangement of helices in the HI(CC) domain is reminiscent of the structure of the H1 domain of the first AAA+ module of ClpB chaperones. It has been hypothesized that LonA proteases with a single AAA+ module may also contain a part of another AAA+ module, the full version of which is present in ClpB. Here, we established and tested the structural basis of this hypothesis using the known crystal structures of various fragments of LonA proteases and ClpB chaperones, as well as the newly determined structure of the Escherichia coli LonA fragment (235-584). The similarities and differences in the corresponding domains of LonA proteases and ClpB chaperones were examined in structural terms. The results of our analysis, complemented by the finding of a singular match in the location of the most conserved axial pore-1 loop between the LonA NB domain and the NB2 domain of ClpB, support our hypothesis that there is a structural and functional relationship between two coiled-coil fragments and implies a similar mechanism of engagement of the pore-1 loops in the AAA+ modules of LonAs and ClpBs.


Assuntos
Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Protease La/química , Protease La/metabolismo , Modelos Moleculares , Conformação Proteica
3.
Acta Biochim Pol ; 55(2): 281-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18506223

RESUMO

We carried out chymotryptic digestion of multimeric ATP-dependent Lon protease from Escherichia coli. Four regions sensitive to proteolytic digestion were located in the enzyme and several fragments corresponding to the individual structural domains of the enzyme or their combinations were isolated. It was shown that (i) unlike the known AAA(+) proteins, the ATPase fragment (A) of Lon has no ATPase activity in spite of its ability to bind nucleotides, and it is monomeric in solution regardless of the presence of any effectors; (ii) the monomeric proteolytic domain (P) does not display proteolytic activity; (iii) in contrast to the inactive counterparts, the AP fragment is an oligomer and exhibits both the ATPase and proteolytic activities. However, unlike the full-length Lon, its AP fragment oligomerizes into a dimer or a tetramer only, exhibits the properties of a non-processive protease, and undergoes self-degradation upon ATP hydrolysis. These results reveal the crucial role played by the non-catalytic N fragment of Lon (including its coiled-coil region), as well as the contribution of individual domains to creation of the quaternary structure of the full-length enzyme, empowering its function as a processive protease.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Protease La/química , Protease La/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Quimotripsina , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases , Protease La/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...