Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 11(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668428

RESUMO

Infectious skin diseases are quite common in veterinary medicine. These diseases can be caused by both bacteria and pathogenic fungi. Antimicrobial drugs are usually used for treatment. An alternative to these drugs could be ozonated oils with antibacterial and antifungal properties. Four different ozonated oils (linseed, hemp seed, sunflower, and olive) were tested in order to develop an optimal pharmaceutical form for the treatment of skin infections in animals. Chemical parameters such as acid and acidity value, iodine and peroxide value, viscosity, and infrared spectres were analysed. The ozonation of oils resulted in changes in their chemical composition. The antimicrobial activity of the tested oils was evaluated by determining the minimum inhibitory concentrations and zones of inhibition in agar. After ozonation, the acid content increased in all the tested oils. The highest acidity was found in linseed oil (13.00 ± 0.11 mg KOH/g; 6.1%). Hemp oil, whose acidity was also significant (second only to linseed oil), was the least acidified by ozonation (11.45 ± 0.09 mg KOH/g; 5.75%). After ozonation, the iodine value in oils was significantly reduced (45-93%), and the highest amounts of iodine value remained in linseed (47.50 ± 11.94 g Iodine/100 g oil) and hemp (44.77 ± 1.41 Iodine/100 g oil) oils. The highest number of peroxides after the ozonation of oils was found in sunflower oil (382 ± 9.8 meqO2/kg). It was found that ozonated hemp and linseed oils do not solidify and remain in liquid form when the temperature drops. The results showed a tendency for the reference strains of S. aureus, E. faecalis, and E. coli to have broader zones of inhibition (p < 0.001) than clinical strains. Overall, ozonated linseed oil had the highest antibacterial activity, and ozonated olive oil had the lowest, as determined by both methods. It was found that ozonated linseed oil was the most effective on bacteria, while the most sensitive were S. aureus ATCC 25923, MRSA, and S. pseudointermedius (MIC 13.5 mg/mL, 4.6 mg/mL, and 13.5 mg/mL, respectively, and sterile zones 20.67 ± 0.98 mm, 20.25 ± 0.45 mm, and 18.25 ± 0.45 mm, respectively). The aim and new aspect of this work is the characterisation of selected ozonated vegetable oils, especially hemp oil, according to chemical and antibacterial parameters, in order to select suitable candidates for preclinical and clinical animal studies in the treatment of bacterial or fungal skin infections in terms of safety and efficacy.

2.
Curr Microbiol ; 77(10): 3013-3023, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32683465

RESUMO

The present study was conducted to find the potential of Lactococcus lactis strains naturally present in raw and fermented milk as probiotics and to evaluate their safety and some technological characteristics. There are numerous studies that evaluated probiotic properties of lactococci, nevertheless, limited studies on the probiotic potential of lactococci isolated from raw milk or dairy products were performed. Strains isolation from raw milk or dairy products and their characterization is important when selection of starter strains for the production of functional dairy foods is performed. Depending on aroma production and acidifying activity, 33 L. lactis strains were selected out of 169 and evaluated for safety, technological and probiotic properties. These strains were screened for antibiotic sensitivity, enzymatic activity, hemolytic and gelatinase activities. The strains were also assessed for resistance to bile salts and acid, growth in bile acids and cholesterol, cell surface hydrophobicity. Based on the obtained results, two strains with the best probiotic potential were selected. These two L. lactis strains, with 51% and 67% survival at low pH and more than 80% resistance to various bile salt concentrations, proved their resistance in vitro to gastric conditions. Also these strains proved to be good acidifiers (the pH of milk was reduced by at least 1 unit in 6 h at 30-37 °C) and can be used in the development of functional dairy foods as starter cultures.


Assuntos
Lactococcus lactis , Probióticos , Animais , Antibacterianos/farmacologia , Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...