Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(5): 3163-3182, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855663

RESUMO

In this paper, we present a 2-photon imaging probe system featuring a novel fluorescence collection method with improved and reliable efficiency. The system aims to miniaturize the potential of 2-photon imaging in the metabolic and morphological characterization of cervical tissue at sub-micron resolution over large imaging depths into a flexible and clinically viable platform towards the early detection of cancers. Clinical implementation of such a probe system is challenging due to inherently low levels of autofluorescence, particularly when imaging deep in highly scattering tissues. For an efficient collection of fluorescence signals, our probe employs 12 0.5 NA collection fibers arranged around a miniaturized excitation objective. By bending and terminating a multitude of collection fibers at a specific angle, we increase collection area and directivity significantly. Positioning of these fibers allows the collection of fluorescence photons scattered away from their ballistic trajectory multiple times, which offers a system collection efficiency of 4%, which is 55% of what our bench-top microscope with 0.75 NA objective achieves. We demonstrate that the collection efficiency is largely maintained even at high scattering conditions and high imaging depths. Radial symmetry of arrangement maintains uniformity of collection efficiency across the whole FOV. Additionally, our probe can image at different tissue depths via axial actuation by a dc servo motor, allowing depth dependent tissue characterization. We designed our probe to perform imaging at 775 nm, targeting 2-photon autofluorescence from NAD(P)H and FAD molecules, which are often used in metabolic tissue characterization. An air core photonic bandgap fiber delivers laser pulses of 100 fs duration to the sample. A miniaturized objective designed with commercially available lenses of 3 mm diameter focuses the laser beam on tissue, attaining lateral and axial imaging resolutions of 0.66 µm and 4.65 µm, respectively. Characterization results verify that our probe achieves collection efficiency comparable to our optimized bench-top 2-photon imaging microscope, minimally affected by imaging depth and radial positioning. We validate autofluorescence imaging capability with excised porcine vocal fold tissue samples. Images with 120 µm FOV and 0.33 µm pixel sizes collected at 2 fps confirm that the 300 µm imaging depth was achieved.

2.
Laryngoscope ; 133(11): 3042-3048, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37096749

RESUMO

BACKGROUND/OBJECTIVES: Tightly-focused ultrafast laser pulses (pulse widths of 100 fs-10 ps) provide high peak intensities to produce a spatially confined tissue ablation effect. The creation of sub-epithelial voids within scarred vocal folds (VFs) via ultrafast laser ablation may help to localize injectable biomaterials to treat VF scarring. Here, we demonstrate the feasibility of this technique in an animal model using a custom-designed endolaryngeal laser surgery probe. METHODS: Unilateral VF mucosal injuries were created in two canines. Four months later, ultrashort laser pulses (5 ps pulses at 500 kHz) were delivered via the custom laser probe to create sub-epithelial voids of ~3 × 3-mm2 in both healthy and scarred VFs. PEG-rhodamine was injected into these voids. Ex vivo optical imaging and histology were used to assess void morphology and biomaterial localization. RESULTS: Large sub-epithelial voids were observed in both healthy and scarred VFs immediately following in vivo laser treatment. Two-photon imaging and histology confirmed ~3-mm wide subsurface voids in healthy and scarred VFs of canine #2. Biomaterial localization within a void created in the scarred VF of canine #2 was confirmed with fluorescence imaging but was not visualized during follow-up two-photon imaging. As an alternative, the biomaterial was injected into the excised VF and could be observed to localize within the void. CONCLUSIONS: We demonstrated sub-epithelial void formation and the ability to inject biomaterials into voids in a chronic VF scarring model. This proof-of-concept study provides preliminary evidence towards the clinical feasibility of such an approach to treating VF scarring using injectable biomaterials. LEVEL OF EVIDENCES: N/A Laryngoscope, 133:3042-3048, 2023.


Assuntos
Terapia a Laser , Prega Vocal , Animais , Cães , Prega Vocal/cirurgia , Prega Vocal/patologia , Cicatriz/cirurgia , Cicatriz/patologia , Terapia a Laser/métodos , Lasers , Materiais Biocompatíveis
3.
Sci Rep ; 12(1): 20554, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446830

RESUMO

Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2 focal beam radius of 1.12 ± 0.10 µm and covering a 46 × 46 µm2 scan area. The probe could deliver up to 3.8 µJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that large area sub-epithelial voids could be created within vocal folds by mechanically translating the probe tip across the tissue surface using external stages. Finally, injection of a model biomaterial into a 1 × 2 mm2 void created 114 ± 30 µm beneath the vocal fold epithelium surface indicated improved localization when compared to direct injection into the tissue without a void, suggesting that our probe may be useful for pre-clinical evaluation of injectable therapeutic biomaterials for vocal fold scarring therapy. With future developments, the surgical system presented here may enable treatment of vocal fold scarring in a clinical setting.


Assuntos
Terapia a Laser , Prega Vocal , Animais , Suínos , Prega Vocal/cirurgia , Cicatriz/cirurgia , Materiais Biocompatíveis , Injeções
4.
J Biomed Opt ; 27(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008882

RESUMO

SIGNIFICANCE: The creation of subepithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable biomaterials toward a clinically viable therapy for vocal fold scarring. AIM: We aim to prove that subepithelial voids can be created in a live animal model and that the ablation process does not engender additional scar formation. We demonstrate localization and long-term retention of an injectable biomaterial within subepithelial voids. APPROACH: A benchtop nonlinear microscope was used to create subepithelial voids within healthy and scarred cheek pouches of four Syrian hamsters. A model biomaterial, polyethylene glycol tagged with rhodamine dye, was then injected into these voids using a custom injection setup. Follow-up imaging studies at 1- and 2-week time points were performed using the same benchtop nonlinear microscope. Subsequent histology assessed void morphology and biomaterial retention. RESULTS: Focused ultrashort pulses can be used to create large subepithelial voids in vivo. Our analysis suggests that the ablation process does not introduce any scar formation. Moreover, these studies indicate localization, and, more importantly, long-term retention of the model biomaterial injected into these voids. Both nonlinear microscopy and histological examination indicate the presence of biomaterial-filled voids in healthy and scarred cheek pouches 2 weeks postoperation. CONCLUSIONS: We successfully demonstrated subepithelial void formation, biomaterial injection, and biomaterial retention in a live animal model. This pilot study is an important step toward clinical acceptance of a new type of therapy for vocal fold scarring. Future long-term studies on large animals will utilize a miniaturized surgical probe to further assess the clinical viability of such a therapy.


Assuntos
Materiais Biocompatíveis , Cicatriz , Animais , Materiais Biocompatíveis/farmacologia , Bochecha/cirurgia , Cicatriz/patologia , Cricetinae , Mesocricetus , Projetos Piloto , Prega Vocal/diagnóstico por imagem , Prega Vocal/cirurgia
5.
Biomed Opt Express ; 12(8): 4779-4794, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513224

RESUMO

We present a miniaturized ultrafast laser surgery probe with improved miniaturized optics to deliver higher peak powers and enable higher surgical speeds than previously possible. A custom-built miniaturized CaF2 objective showed no evidence of the strong multiphoton absorption observed in our previous ZnS-based probe, enabling higher laser power delivery to the tissue surface for ablation. A Kagome fiber delivered ultrashort pulses from a high repetition rate fiber laser to the objective, producing a focal beam radius of 1.96 µm and covering a 90×90 µm2 scan area. The probe delivered the maximum available fiber laser power, providing fluences >6 J/cm2 at the tissue surface at 53% transmission efficiency. We characterized the probe's performance through a parametric ablation study on bovine cortical bone and defined optimal operating parameters for surgery using an experimental- and simulation-based approach. The entire opto-mechanical system, enclosed within a 5-mm diameter housing with a 2.6-mm diameter probe tip, achieved material removal rates >0.1 mm3/min, however removal rates were ultimately limited by the available laser power. Towards a next generation surgery probe, we simulated maximum material removal rates when using a higher power fiber laser and found that removal rates >2 mm3/min could be attained through appropriate selection of laser surgery parameters. With future development, the device presented here can serve as a precise surgical tool with clinically viable speeds for delicate applications such as spinal decompression surgeries.

6.
Appl Opt ; 59(28): 8806-8813, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104564

RESUMO

Thermo-optical and nonlinear property characterization of refractive optical components is essential for endoscopic instrumentation that utilizes high-power, high-repetition-rate ultrafast lasers. For example, ytterbium-doped fiber lasers are well suited for ultrafast laser microsurgery applications; however, the thermo-optical responses of many common lens substrates are not well understood at 1035 nm wavelength. Using a z-scan technique, we first measured the nonlinear refractive indices of CaF2, MgF2, and BaF2 at 1035 nm and found values that match well with those from the literature at 1064 nm. To elucidate effects of thermal lensing, we performed z-scans at multiple laser repetition rates and multiple average powers. The results showed negligible thermal effects up to an average power of 1 W and at 10 W material-specific thermal lensing significantly altered z-scan measurements. Using a 2D temperature model, we could determine the source of the observed thermal lensing effects. Linear absorption was determined as the main source of heating in these crystals. On the other hand, inclusion of nonlinear absorption as an additional heat source in the simulations showed that thermal lensing in borosilicate glass was strongly influenced by nonlinear absorption. This method can potentially provide a sensitive method to measure small nonlinear absorption coefficients of transparent optical materials. These results can guide design of miniaturized optical systems for ultrafast laser surgery and deep-tissue imaging probes.

7.
J Biomed Opt ; 24(8): 1-7, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31468749

RESUMO

Ultrafast laser ablation may provide a treatment for vocal fold (VF) scarring. Optical properties of VFs must be known prior to clinical implementation to select appropriate laser surgery conditions. We present scattering lengths of epithelium ℓs , ep, superficial lamina propria ℓs , SLP, and ablation thresholds Fth of human and canine VF tissues. Our experimental approach involves an image-guided, laser-ablation-based method that allows for simultaneous determination of ℓs and Fth in these multilayered tissues. Studying eight canine samples, we found ℓs , ep = 75.3 ± 5.7 µm, ℓs , SLP = 26.1 ± 1.2 µm, Fth , ep = 1.58 ± 0.06 J / cm2, and Fth , SLP = 1.55 ± 0.17 J / cm2. Studying five human samples, we found ℓs , ep = 42.8 ± 3.3 µm and Fth , ep = 1.66 ± 0.10 J / cm2. We studied the effects of cumulative pulse overlap on ablation threshold and found no significant variations beyond 12 overlapping pulses. Interestingly, our studies about the effect of sample storage on the scattering properties of porcine VF show a 60% increase in ℓs , ep for fresh porcine VF when compared to the same sample stored in isotonic solution. These results provide guidelines for clinical implementation by enabling selection of optimal laser surgery parameters for subsurface ablation of VF tissues.


Assuntos
Doenças da Laringe/terapia , Mucosa/fisiopatologia , Espalhamento de Radiação , Prega Vocal/diagnóstico por imagem , Animais , Cicatriz/patologia , Cicatriz/terapia , Cães , Humanos , Doenças da Laringe/fisiopatologia , Terapia a Laser , Lasers , Especificidade da Espécie , Manejo de Espécimes , Suínos
8.
Biosensors (Basel) ; 5(3): 398-416, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198251

RESUMO

An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate) (pHEMA) and two copolymers of pHEMA and poly(acrylamide) (pAam). Diffusion analysis demonstrated the ability to control lactate transport by varying the hydrogel composition, while having a minimal effect on oxygen diffusion. Sensors displayed the desired dose-variable response to lactate challenges, highlighting the tunable, diffusion-controlled nature of the sensing platform. Short-term repeated exposure tests revealed enhanced stability for sensors comprising hydrogels with acrylamide additives; after an initial "break-in" period, signal retention was 100% for 15 repeated cycles. Finally, because this study describes the modification of a previously developed glucose sensor for lactate analysis, it demonstrates the potential for mix-and-match enzyme-phosphor-hydrogel sensing for use in future multi-analyte sensors.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas , Hidrogéis/química , Ácido Láctico/química , Oxigenases de Função Mista/química , Paládio/química , Porfirinas/química , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA