Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Pharmacol ; 10: 982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572176

RESUMO

Background: Platinum-based drugs prevail as the main treatment of lung cancer; this is caused by their relative effectiveness despite known side effects, such as neurotoxicity. The risk reward of the treatment and side effects is confronted when dosage is considered and when resistance to treatment develops. Development of new compounds that improve effectiveness and safety profiles addresses this ongoing need in clinical practice. Objectives: The novel water-soluble platinum complex, diplatin, was synthesized, and its antitumor potency and toxicology profile were evaluated in murine xenograft tumor models and in lung cancer cell lines. Methods: The effects of diplatin, cisplatin (DDP), and carboplatin (CBP) on the viability of nine lung tumor cell lines and one normal human lung epithelial cell line were evaluated using the MTT assay. Therapeutic index was calculated as LD50/ED50 to identify and compare the ideal therapeutic windows of the above compounds. Diplatin's antitumor effects were assessed in lung xenograft tumors of nude mice; molecular mechanisms of therapeutic effects were identified. Results: Diplatin had desirable IC50 compared to CBP in a variety of cultured tumor cells, notably lung tumor cells. In the mouse xenograft lung tumor, diplatin led to a substantially improved therapeutic index when compared to the effects of DDP and CBP. Importantly, diplatin inhibited the growth of DDP-resistant lung tumor cells. Diplatin's mode of action was characterized to be through cell cycle arrest in the G2/M phase and induction of lung tumor apoptosis via ROS/JNK/p53-mediated pathways. Conclusion: Diplatin was observed to have antitumor effects in mice with both greater potency and safety compared with DDP and CBP. These observations indicate that diplatin is promising as a potential treatment in future clinical applications.

3.
J Neurosci Methods ; 321: 20-27, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959080

RESUMO

BACKGROUND: Temporal changes of pain perception to prolonged tonic heat pain are conventionally assessed using a computerized visual analog scale. Such a rating-based approach is, however, prone to floor and ceiling effects, which limit the assessment of temporal changes in perception. Thus, alternative methods that overcome these shortcomings are warranted. NEW METHOD: The aim of this study was to assess the feasibility and reliability of a psychophysical approach, i.e., participant-controlled temperature (PCT), to evaluate ongoing human perception of tonic heat pain. Fifty participants were presented with a 45 °C stimulus on the non-dominant hand, and were instructed to maintain their initial sensation for two minutes via a feedback controller in the dominant hand. A subset of participants (n = 17) performed PCT tonic heat protocols on two different days to determine the test-retest reliability. As participants controlled temperature to maintain a stable pain perception, any adjustments made reflected shifts in their perception of heat. RESULTS: In 33 (71.7%) participants, we observed an initial adaptation (participant increased temperature) followed by temporal summation of pain (participant decreased temperature). Twelve participants (26.1%) showed only adaptation and one (2.2%) only temporal summation. No sex differences were observed, nor did the initial rating of pain have an effect on PCT outcomes. Temporal summation of pain showed moderate to substantial reliability upon retest. CONCLUSIONS: PCT represents can be reliably performed using a contact heat stimulator to measure the temporal summation of pain. The standardized setup and overall good reliability of the outcome measures facilitate a sound implementation into the clinical work-up of patients with pain conditions.


Assuntos
Temperatura Alta , Medição da Dor/métodos , Percepção da Dor , Psicofísica/métodos , Sensação Térmica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Limiar da Dor , Adulto Jovem
4.
World J Pediatr ; 15(5): 415-421, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30997654

RESUMO

BACKGROUND: Formation of protein complexes across synapses is a critical process in neurodevelopment, having direct implications on brain function and animal behavior. Here, we present the understanding, importance, and potential impact of a newly found regulator of such a key interaction. DATA SOURCES: A systematic search of the literature was conducted on PubMed (Medline), Embase, and Central-Cochrane Database. RESULTS: Membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) were recently discovered to regulate synaptic development and transmission via suppression of neurexins-neuroligins trans-synaptic complex formation. MDGAs also regulate axonal migration and outgrowth. In the context of their physiological role, we begin to consider the potential links to the etiology of certain neurodevelopmental disorders. We present the gene expression and protein structure of MDGAs and discuss recent progress in our understanding of the neurobiological role of MDGAs to explore its potential as a therapeutic target. CONCLUSION: MDGAs play a key role in neuron migration, axon guidance and synapse development, as well as in regulating brain excitation and inhibition balance.


Assuntos
Moléculas de Adesão de Célula Nervosa/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Sinapses/fisiologia , Animais , Humanos , Camundongos
5.
J Neurosci ; 36(14): 4080-92, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053214

RESUMO

Motor cortical plasticity contributes to spontaneous recovery after incomplete spinal cord injury (SCI), but the pathways underlying this remain poorly understood. We performed optogenetic mapping of motor cortex in channelrhodopsin-2 expressing mice to assess the capacity of the cortex to re-establish motor output longitudinally after a C3/C4 dorsal column SCI that bilaterally ablated the dorsal corticospinal tract (CST) containing ∼96% of corticospinal fibers but spared ∼3% of CST fibers that project via the dorsolateral funiculus. Optogenetic mapping revealed extensive early deficits, but eventual reestablishment of motor cortical output maps to the limbs at the same latency as preoperatively by 4 weeks after injury. Analysis of skilled locomotion on the horizontal ladder revealed early deficits followed by partial spontaneous recovery by 6 weeks after injury. To dissociate between the contributions of injured dorsal projecting versus spared dorsolateral projecting corticospinal neurons, we established a transient silencing approach to inactivate spared dorsolaterally projecting corticospinal neurons specifically by injecting adeno-associated virus (AAV)-expressing Cre-dependent DREADD (designer receptor exclusively activated by designer drug) receptor hM4Di in sensorimotor cortex and AAV-expressing Cre in C7/C8 dorsolateral funiculus. Transient silencing uninjured dorsolaterally projecting corticospinal neurons via activation of the inhibitory DREADD receptor hM4Di abrogated spontaneous recovery and resulted in a greater change in skilled locomotion than in control uninjured mice using the same silencing approach. These data demonstrate the pivotal role of a minor dorsolateral corticospinal pathway in mediating spontaneous recovery after SCI and support a focus on spared corticospinal neurons as a target for therapy. SIGNIFICANCE STATEMENT: Spontaneous recovery can occur after incomplete spinal cord injury (SCI), but the pathways underlying this remain poorly understood. We performed optogenetic mapping of motor cortex after a cervical SCI that interrupts most corticospinal transmission but results in partial recovery on a horizontal ladder task of sensorimotor function. We demonstrate that the motor cortex can reestablish output to the limbs longitudinally. To dissociate the roles of injured and uninjured corticospinal neurons in mediating recovery, we transiently silenced the minor dorsolateral corticospinal pathway spared by our injury. This abrogated spontaneous recovery and resulted in a greater change in skilled locomotion than in uninjured mice using the same approach. Therefore, uninjured corticospinal neurons substantiate remarkable motor cortical plasticity and partial recovery after SCI.


Assuntos
Córtex Motor/patologia , Tratos Piramidais/patologia , Traumatismos da Medula Espinal/patologia , Animais , Mapeamento Encefálico , Vias Eferentes/crescimento & desenvolvimento , Vias Eferentes/patologia , Imuno-Histoquímica , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Optogenética , Recuperação de Função Fisiológica , Córtex Sensório-Motor/patologia
6.
J Neurosci ; 35(34): 11791-810, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311764

RESUMO

Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.


Assuntos
Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Piramidais/metabolismo , Vasodilatação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
7.
J Cereb Blood Flow Metab ; 35(10): 1579-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26082013

RESUMO

We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.


Assuntos
Circulação Cerebrovascular/fisiologia , Neurônios GABAérgicos/fisiologia , Optogenética/métodos , Ácido gama-Aminobutírico/fisiologia , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Channelrhodopsins , Maleato de Dizocilpina/farmacologia , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Lasers , Masculino , Camundongos , Estimulação Luminosa , Quinoxalinas/farmacologia
8.
J Neurosci ; 34(4): 1094-104, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453302

RESUMO

We evaluated the effects of ministrokes targeted to individual pial arterioles on motor function in Thy-1 line 18 channelrhodopsin-2 (ChR2) transgenic mice within the first hours after ischemia. Using optogenetics, we directly assessed both the excitability and motor output of cortical neurons in a manner independent of behavioral state or training. Occlusion of individual arterioles within the motor cortex led to a ministroke that was verified using laser speckle contrast imaging. Surprisingly, ministrokes targeted to a relatively small region of the forelimb motor map, with an ischemic core of 0.07 ± 0.03 mm(2), impaired motor responses evoked from points across widespread areas of motor cortex even 1.5 mm away. Contrasting averaged ChR2-evoked electroencephalographic, spinal (ChR2 evoked potential), and electromyographic responses revealed a mismatch between measures of cortical excitability and motor output within 60 min after stroke. This mismatch suggests that apparently excitable cortical neurons (even >1 mm into peri-infarct areas, away from the infarct core) were impaired in their capacity to generate spinal potentials leading to even more severe deficits in motor output at muscles. We suggest that ischemia, targeted to a subset of motor cortex, leads to relatively small reductions in excitability within motor cortex, and cumulative depression of both descending spinal circuits and motor output in response to the activation of widespread cortical territories even outside of the area directly affected by the ischemia.


Assuntos
Córtex Motor/fisiopatologia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Channelrhodopsins , Modelos Animais de Doenças , Eletrofisiologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Optogenética/métodos
9.
J Cereb Blood Flow Metab ; 33(8): 1148-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23736644

RESUMO

Recently we have shown that despite reperfusion, sensory processing exhibits persistent deficits after global ischemia in a mouse in vivo model. We now address how motor output, specifically cortically evoked muscle activity, stimulated by channelrhodopsin-2 is affected by global ischemia and reperfusion. We find that the light-based optogenetic motor map recovers to 80% within an hour. Moreover, motor output recovers relatively faster and more completely than the sensory processing after 5-minute period of global ischemia. Our results suggest a differential sensitivity of sensory and motor systems to the effects of global ischemia and reperfusion that may have implications for rehabilitation.


Assuntos
Isquemia Encefálica/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Mapeamento Encefálico , Channelrhodopsins , Eletroencefalografia , Eletromiografia , Lasers , Masculino , Camundongos , Camundongos Transgênicos , Neuroimagem , Estimulação Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...