Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148340

RESUMO

An unusual example of a potassium capped terminal cobalt-oxido complex has been isolated and crystallographically characterized. The synthesis of [tBu,TolDHP]CoOK proceeds from a previously reported parent compound, [tBu,TolDHP]CoOH, via deprotonation with KOtBu. Structural and electronic characterization suggest a weakly coupled dimer in a distinct seesaw geometry with a Co(III) oxidation state and a non-innocent radical ligand.

2.
J Am Chem Soc ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146525

RESUMO

High-valent cobalt oxides play a pivotal role in alternative energy technology as catalysts for water splitting and as cathodes in lithium-ion batteries. Despite this importance, the properties governing the stability of high-valent cobalt oxides and specifically possible oxygen evolution pathways are not clear. One root of this limited understanding is the scarcity of high-valent Co(IV)-containing model complexes; there are no reports of stable, well-defined complexes with multiple Co(IV) centers. Here, an oxidatively robust fluorinated ligand scaffold enables the isolation and crystallographic characterization of a Co(IV)2-bis-µ-oxo complex. This complex is remarkably stable, in stark contrast with previously reported Co(IV)2 species that are highly reactive, which demonstrates that oxy-Co(IV)2 species are not necessarily unstable with respect to oxygen evolution. This example underscores a new design strategy for highly oxidizing transition-metal fragments and provides detailed data on a previously inaccessible chemical unit of relevance to O-O bond formation and oxygen evolution.

3.
J Am Chem Soc ; 146(25): 17285-17295, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873813

RESUMO

Near-infrared (NIR) lumiphores are promising candidates for numerous imaging, communication, and sensing applications, but they typically require large, conjugated scaffolds to achieve emission in this low-energy region. Due to the extended conjugation and synthetic complexity required, it is extremely difficult to tune the photophysical properties of these systems for desired applications. Here, we report facile tuning of deep NIR-emitting diradicaloid complexes through simple modification of peripheral ligands. These new lumiphores are rare examples of air-, acid-, and water-stable emissive diradicaloids. We apply a simple Hammett parameter-based strategy to tune the electron donation of the capping ligand across a series of commercially available triarylphosphines. This minor peripheral modification significantly alters the electronic structure, and consequently, the electrochemical, photophysical, and magnetic properties of the tetrathiafulvalene tetrathiolate (TTFtt)-based lumiphores. The resultant ∼100 nm absorption and emission range spans common laser lines and the desirable telecom region (ca. 1260-1550 nm). Furthermore, these lumiphores are sensitive to local dielectrics, distinguishing them as promising candidates for ratiometric imaging and/or barcoding in the deep NIR region.

4.
Chem Catal ; 4(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799408

RESUMO

Electrochemistry has been an increasingly useful tool for organic synthesis, as it can selectively generate reactive intermediates under mild conditions using an applied potential. Concurrently, synergistic activity of a metal and a ligand has been used in thermal catalysis and electrocatalytic renewable fuel generation for substrate selectivity and improved catalyst activity. Combining these synthetic strategies is an attractive approach for mild, selective, and sustainable electrosynthesis. This perspective discusses examples of metal-ligand synergistic catalysis in electrochemical applications in organic and organometallic synthesis. The range of reactions and ligand design principles illustrates many opportunities for further discovery in this area and the potential for far-reaching synthetic benefits.

5.
J Am Chem Soc ; 146(9): 5855-5863, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38375752

RESUMO

Despite the broad importance of hydrogen peroxide (H2O2) in oxidative transformations, there are comparatively few viable routes for its production. The majority of commercial H2O2 is currently produced by the stepwise reduction of dioxygen (O2) via the anthraquinone process, but direct electrochemical formation from water (H2O) would have several advantages─namely, avoiding flammable gases or stepwise separations. However, the selective oxidation of H2O to form H2O2 over the thermodynamically favored product of O2 is a difficult synthetic challenge. Here, we present a molecular H2O oxidation system with excellent selectivity for H2O2 that functions both stoichiometrically and catalytically. We observe high efficiency for electrocatalytic H2O2 production at low overpotential with no O2 observed under any conditions. Mechanistic studies with both calculations and kinetic analyses from isolated intermediates suggest that H2O2 formation occurs in a bimolecular fashion via a dinuclear H2O2-bridged intermediate with an important role for a redox non-innocent ligand. This system showcases the ability of metal-ligand cooperativity and strategic design of the secondary coordination sphere to promote kinetically and thermodynamically challenging selectivity in oxidative catalysis.

6.
J Am Chem Soc ; 146(1): 476-486, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163759

RESUMO

Alkyne semihydrogenation is a broadly important transformation in chemical synthesis. Here, we introduce an electrochemical method for the selective semihydrogenation of terminal alkynes using a dihydrazonopyrrole Ni complex capable of storing an H2 equivalent (2H+ + 2e-) on the ligand backbone. This method is chemoselective for the semihydrogenation of terminal alkynes over internal alkynes or alkenes. Mechanistic studies reveal that the transformation is concerted and Z-selective. Calculations support a ligand-based hydrogen-atom transfer pathway instead of a hydride mechanism, which is commonly invoked for transition metal hydrogenation catalysts. The synthesis of the proposed intermediates demonstrates that the catalytic mechanism proceeds through a reduced formal Ni(I) species. The high yields for terminal alkene products without over-reduction or oligomerization are among the best reported for any homogeneous catalyst. Furthermore, the metal-ligand cooperative hydrogen transfer enabled with this system directs the efficient flow of H atom equivalents toward alkyne reduction rather than hydrogen evolution, providing a blueprint for applying similar strategies toward a wide range of electroreductive transformations.

7.
Inorg Chem ; 62(51): 21224-21232, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38051936

RESUMO

Strongly donating scorpionate ligands support the study of high-valent transition metal chemistry; however, their use is frequently limited by oxidative degradation. To address this concern, we report the synthesis of a tris(imidazol-5-ylidene)borate ligand featuring trifluoromethyl groups surrounding its coordination pocket. This ligand represents the first example of a chelating poly(imidazol-5-ylidene) mesoionic carbene ligand, a scaffold that is expected to be extremely donating. The {NiNO}10 complex of this ligand, as well as that of a previously reported strongly donating tris(imidazol-2-ylidene)borate, has been synthesized and characterized. This new ligand's strong donor properties, as measured by the υNO of its {NiNO}10 complex and natural bonding orbital second-order perturbative energy analysis, are at par with those of the well-studied alkyl-substituted tris(imidazol-2-ylidene)borates, which are known to effectively stabilize high-valent intermediates. The good donor properties of this ligand, despite the electron-withdrawing trifluoromethyl substituents, arise from the strongly donating imidazol-5-ylidene mesoionic carbene arms. These donor properties, when combined with the robustness of trifluoromethyl groups toward oxidative decomposition, suggest this ligand scaffold will be a useful platform in the study of oxidizing high-valent transition-metal species.

8.
Inorg Chem ; 62(48): 19488-19497, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37967380

RESUMO

Magnetic exchange coupling (J) between different spin centers plays a crucial role in molecule-based magnetic materials. Direct exchange coupling between an organic radical and a metal is frequently stronger than superexchange through diamagnetic ligands, and the strategy of using organic radicals to engender desirable magnetic properties has been an area of active investigation. Despite significant advances and exciting bulk properties, the magnitude of J for radical linkers bridging paramagnetic centers is still difficult to rationally predict. It is thus important to elucidate the features of organic radicals that govern this parameter. Here, we measure J for the tetrathiafulvalene-tetrathiolate radical (TTFtt3-•) in a dinuclear Mn(II) complex. Magnetometry studies show that the antiferromagnetic coupling in this complex is much weaker than that in related Mn(II)-radical compounds, in contrast to what might be expected for the S-based chelating donor atoms of TTFtt. Experimental and computational analyses suggest that this small J coupling may be attributed to poor overlap between Mn- and TTFtt-based magnetic orbitals coupled with insignificant spin density on the coordinating S-atoms. These factors override any expected increase in J from the comparatively strong S-donors. This work elucidates the magnetic coupling properties of the TTFtt3-• radical for the first time and also demonstrates how multiple competing factors must be considered in rationally designing organic radical ligands for molecular-based magnetic compounds.

9.
ACS Catal ; 13(19): 12673-12680, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822863

RESUMO

Deoxygenation of nitrous oxide (N2O) has significant environmental implications, as it is not only a potent greenhouse gas but is also the main substance responsible for the depletion of ozone in the stratosphere. This has spurred significant interest in molecular complexes that mediate N2O deoxygenation. Natural N2O reduction occurs via a Cu cofactor, but there is a notable dearth of synthetic molecular Cu catalysts for this process. In this work, we report a selective molecular Cu catalyst for the electrochemical reduction of N2O to N2 using H2O as the proton source. Cyclic voltammograms show that increasing the H2O concentration facilitates the deoxygenation of N2O, and control experiments with a Zn(II) analogue verify an essential role for Cu. Theory and spectroscopy support metal-ligand cooperative catalysis between Cu(I) and a reduced tetraimidazolyl-substituted radical pyridine ligand (MeIm4P2Py = 2,6-(bis(bis-2-N-methylimidazolyl)phosphino)pyridine), which can be observed by Electron Paramagnetic Resonance (EPR) spectroscopy. Comparison with biological processes suggests a common theme of supporting electron transfer moieties in enabling Cu-mediated N2O reduction.

10.
ACS Catal ; 12(16): 9933-9943, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36033368

RESUMO

The use of supporting ligands that can store either protons or electrons has emerged as a powerful strategy in catalysis. While these strategies are potent individually, natural systems mediate remarkable transformations by combining the storage of both protons and electrons in the secondary coordination sphere. As such, there has been recent interest in using this strategy to enable fundamentally different transformations. Furthermore, outsourcing H-atom or hydrogen storage to ancillary ligands can also enable alternative mechanistic pathways and thereby selectivity. Here, we describe the application of this strategy to facilitate radical reactivity in Co-based hydrogenation catalysis. Metalation of previously reported dihydrazonopyrrole ligands with Co results in paramagnetic complexes, which are best described as having Co(II) oxidation states. These complexes catalytically hydrogenate olefins with low catalyst loadings under mild conditions (1 atm H2, 23 °C). Mechanistic, spectroscopic, and computational investigations indicate that this system goes through a radical hydrogen-atom transfer (HAT) type pathway that is distinct from classic organometallic mechanisms and is supported by the ability of the ligand to store H2. These results show how ancillary ligands can facilitate efficient catalysis, and furthermore how classic organometallic mechanisms for catalysis can be altered by the secondary coordination sphere.

11.
J Am Chem Soc ; 144(34): 15569-15580, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977083

RESUMO

Cu systems feature prominently in aerobic oxidative catalysis in both biology and synthetic chemistry. Metal ligand cooperativity is a common theme in both areas as exemplified by galactose oxidase and by aminoxyl radicals in alcohol oxidations. This has motivated investigations into the aerobic chemistry of Cu and specifically the isolation and study of Cu-superoxo species that are invoked as key catalytic intermediates. While several examples of complexes that model biologically relevant Cu(II) superoxo intermediates have been reported, they are not typically competent aerobic catalysts. Here, we report a new Cu complex of the redox-active ligand tBu,TolDHP (2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) that activates O2 to generate a catalytically active Cu(II)-superoxo complex via ligand-based electron transfer. Characterization using ultraviolet (UV)-visible spectroscopy, Raman isotope labeling studies, and Cu extended X-ray absorption fine structure (EXAFS) analysis confirms the assignment of an end-on κ1 superoxo complex. This Cu-O2 complex engages in a range of aerobic catalytic oxidations with substrates including alcohols and aldehydes. These results demonstrate that bioinspired Cu systems can not only model important bioinorganic intermediates but can also mediate and provide mechanistic insight into aerobic oxidative transformations.


Assuntos
Cobre , Oxigênio , Catálise , Cobre/química , Ligantes , Oxirredução , Estresse Oxidativo , Oxigênio/química
12.
J Am Chem Soc ; 144(36): 16447-16455, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037407

RESUMO

Near-infrared (NIR)-emitting molecules are promising candidates for biological sensing and imaging applications; however, many NIR dyes are large conjugated systems which frequently have issues with stability, solubility, and tunability. Here, we report a novel class of compact and tunable fluorescent diradicaloid complexes which are air-, water-, light-, and temperature-stable. These properties arise from a compressed π manifold which promotes an intense ligand-centered π-π transition in the NIR II (1000-1700 nm) region and which subsequently emits at ∼1200 nm. This emission is among the brightest known for monomolecular lumiphores with deep NIR II (>1100 nm) emission, nearly an order of magnitude brighter than the commercially available NIR II dye IR 26. Furthermore, this fluorescence is electrochemically sensitive, with efficient switching upon addition of redox agents. The brightness, stability, and modularity of this system distinguish it as a promising candidate for the development of new technologies built around NIR emission.


Assuntos
Corantes Fluorescentes , Compostos Heterocíclicos , Corantes Fluorescentes/química
13.
J Coord Chem ; 75(11-14): 1853-1864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37139469

RESUMO

Cooperativity between organic ligands and transition metals in H-atom (proton/electron) transfer catalysis has been an important recent area of investigation. Tetramethylpiperidine-N-oxyl (TEMPO) radicals feature prominently in this area, prompting us to examine cooperativity between its hydrogenated congener, TEMPOH, and Co centers ligated by dihydrazonopyrrole ligands which have previously been shown to also store H-atom equivalents. Addition of TEMPOH to ( tBu,TolDHP)CoOTf results in formation of an unusual Co-adduct of 1-hydroxy-2,2,6,6-tetramethylpiperidin-1-ium (TEMPOH2 +) which has been characterized with IR spectroscopy and single crystal X-ray diffraction. This adduct is thermally unstable, and decomposes, putatively via N-O homolysis, to generate 2,2,6,6-tetramethylpiperidine and the Co-hydroxide complex [( tBu,TolDHP)CoOH][OTf]. Computational investigations suggest a proton-coupled electron transfer step to generate the TEMPOH2 + adduct where the Co center serves as an electron acceptor. Despite the prevalence of aminoxyl reagents in catalysis, particularly in aerobic transformations, metal complexes of differently hydrogenated congeners of TEMPO are rare. The isolation of a TEMPOH2 + adduct and investigations into its formation shed light on related transformations that may occur during metal-aminoxyl cooperative catalysis.

14.
J Am Chem Soc ; 143(43): 18121-18130, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34698493

RESUMO

Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.


Assuntos
Complexos de Coordenação/química , Oxigênio/química , Peróxidos/química , Complexos de Coordenação/síntese química , Hidrazonas/síntese química , Hidrazonas/química , Ferro/química , Ligantes , Oxirredução , Pirróis/síntese química , Pirróis/química
15.
Trends Chem ; 3(12): 993-996, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36091093

RESUMO

Realizing cooperativity between ligands and metal centers in the transfer of proton and electron equivalents has the potential to facilitate faster, selective, and novel transformations. Recent advances in the synthesis and application of ligands with these design features illustrate the value of this biomimetic strategy in synthetic chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA