Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenomes ; 8(2)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38804366

RESUMO

The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to mediate changes in cancer-stimulated monocytes in vitro. We therefore investigated the relationship of ascorbate with monocyte subsets and epigenetic modifications in patients with metastatic melanoma receiving immunotherapy. Patients receiving immunotherapy were compared to other cancer cohorts and age-matched healthy controls. Ascorbate levels in plasma and peripheral blood-derived mononuclear cells (PBMCs), monocyte subtype and epigenetic markers were measured, and adverse events, tumour response and survival were recorded. A quarter of the immunotherapy cohort had hypovitaminosis C, with plasma and PBMC ascorbate levels significantly lower than those from other cancer patients or healthy controls. PBMCs from the immunotherapy cohort contained similar frequencies of non-classical and classical monocytes. DNA methylation markers and intracellular ascorbate concentration were correlated with monocyte subset frequency in healthy controls, but correlation was lost in immunotherapy patients. No associations between ascorbate status and immune-related adverse events or tumour response or overall survival were apparent.

2.
PLoS One ; 16(10): e0258831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34665826

RESUMO

Cancer causes mitochondrial alterations in skeletal muscle, which may progress to muscle wasting and, ultimately, to cancer cachexia. Understanding how exercise adaptations are altered by cancer and cancer treatment is important for the effective design of exercise interventions aimed at improving cancer outcomes. We conducted an exploratory study to investigate how tumor burden and cancer immunotherapy treatment (anti-PD-1) modify the skeletal muscle mitochondrial response to exercise training in mice with transplantable tumors (B16-F10 melanoma and EO771 breast cancer). Mice remained sedentary or were provided with running wheels for ~19 days immediately following tumor implant while receiving no treatment (Untreated), isotype control antibody (IgG2a) or anti-PD-1. Exercise and anti-PD-1 did not alter the growth rate of either tumor type, either alone or in combination therapy. Untreated mice with B16-F10 tumors showed increases in most measured markers of skeletal muscle mitochondrial content following exercise training, as did anti-PD-1-treated mice, suggesting increased mitochondrial content following exercise training in these groups. However, mice with B16-F10 tumors receiving the isotype control antibody did not exhibit increased skeletal muscle mitochondrial content following exercise. In untreated mice with EO771 tumors, only citrate synthase activity and complex IV activity were increased following exercise. In contrast, IgG2a and anti-PD-1-treated groups both showed robust increases in most measured markers following exercise. These results indicate that in mice with B16-F10 tumors, IgG2a administration prevents exercise adaptation of skeletal muscle mitochondria, but adaptation remains intact in mice receiving anti-PD-1. In mice with EO771 tumors, both IgG2a and anti-PD-1-treated mice show robust skeletal muscle mitochondrial exercise responses, while untreated mice do not. Taken together, we postulate that immune modulation may enhance skeletal muscle mitochondrial response to exercise in tumor-bearing mice, and suggest this as an exciting new avenue for future research in exercise oncology.


Assuntos
Inibidores de Checkpoint Imunológico/administração & dosagem , Imunoglobulina G/administração & dosagem , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/terapia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Animais , Linhagem Celular Tumoral , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoglobulina G/farmacologia , Imunoterapia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Distribuição Aleatória , Resultado do Tratamento
3.
Immunol Lett ; 239: 60-71, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480981

RESUMO

Immune checkpoint inhibition is highly effective in treating a subset of patients with certain cancers, such as malignant melanoma. However, a large proportion of patients will experience treatment resistance, and other tumour types, such as breast cancer, have thus far proven largely refractory to immune checkpoint inhibitors as single agents. Exercise has been associated with improved cancer patient survival, has known immune-modulatory effects, may improve anti-tumour immunity and may normalise tumour blood vessels. Therefore, we hypothesised that post-implant exercise would boost the effect of concurrent immunotherapy by enhancing anti-tumour immune responses and improving tumour blood flow. To investigate this, mice with EO771 breast tumours or B16-F10 melanomas received anti-PD-1, an isotype control antibody or no treatment. Mice were randomised to exercise (voluntary wheel running) or no exercise at tumour implant. Exercise reduced the number of CD8+T cells in EO771 (p = 0.0011) but not B16-F10 tumours (p = 0.312), and reduced the percentage of CD8+T cells within the total T cell population in both tumour types (B16-F10: p = 0.0389; EO771: p = 0.0015). In contrast, the combination of exercise and anti-PD-1 increased the percentage of CD8+T cells in EO771 (p = 0.0339) but not B16-F10 tumours. Taken together, our results show that exercise and anti-PD-1 induce changes in the tumour immune microenvironment which are dependant on tumour type.


Assuntos
Neoplasias da Mama/terapia , Terapia por Exercício , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma Experimental/terapia , Neoplasias Cutâneas/terapia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Terapia Combinada/métodos , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
5.
Antioxidants (Basel) ; 10(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799728

RESUMO

Tumour-associated macrophages (TAMs) are ubiquitously present in tumours and commonly associated with poor prognosis. In immune cells, ascorbate affects epigenetic regulation, differentiation and phenotype via its co-factor activity for the 2-oxoglutarate dependent dioxygenase enzymes. Here, we determined the effect of ascorbate on TAM development in response to tumour microenvironmental cues. Naïve murine bone marrow monocytes were cultured with Lewis Lung Carcinoma conditioned media (LLCM) or macrophage colony-stimulating factor (MCSF) to encourage the development into tumour-associated macrophages. Cells were stimulated with hypoxia (1% O2), with or without ascorbate (500 µM) supplementation. Cells and media were harvested for gene, cell surface marker and protein analyses. LLCM supported bone marrow monocyte growth with >90% of cells staining CD11b+F4/80+, indicative of monocytes/macrophages. LLCM-grown cells showed increased expression of M2-like and TAM genes compared to MCSF-grown cells, which further increased with hypoxia. In LLCM-grown cells, ascorbate supplementation was associated with increased F4/80 cell surface expression, and altered gene expression and protein secretion. Our study shows that ascorbate modifies monocyte phenotype when grown under tumour microenvironmental conditions, but this was not clearly associated with either a pro- or anti-tumour phenotype, and reflects a complex and nuanced response of macrophages to ascorbate. Overall, ascorbate supplementation clearly has molecular consequences for TAMs, but functional and clinical consequences remain unknown.

6.
PLoS One ; 15(3): e0229290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187204

RESUMO

Preclinical studies have shown a larger inhibition of tumour growth when exercise begins prior to tumour implant (preventative setting) than when training begins after tumour implant (therapeutic setting). However, post-implantation exercise may alter the tumour microenvironment to make it more vulnerable to treatment by increasing tumour perfusion while reducing hypoxia. This has been shown most convincingly in breast and prostate cancer models to date and it is unclear whether other tumour types respond in a similar way. We aimed to determine whether tumour perfusion and hypoxia are altered with exercise in a melanoma model, and compared this with a breast cancer model. We hypothesised that post-implantation exercise would reduce tumour hypoxia and increase perfusion in these two models. Female, 6-10 week old C57BL/6 mice were inoculated with EO771 breast or B16-F10 melanoma tumour cells before randomisation to either exercise or non-exercising control. Exercising mice received a running wheel with a revolution counter. Mice were euthanised when tumours reached maximum ethical size and the tumours assessed for perfusion, hypoxia, blood vessel density and proliferation. We saw an increase in heart to body weight ratio in exercising compared with non-exercising mice (p = 0.0008), indicating that physiological changes occurred with this form of physical activity. However, exercise did not affect vascularity, perfusion, hypoxia or tumour growth rate in either tumour type. In addition, EO771 tumours had a more aggressive phenotype than B16-F10 tumours, as inferred from a higher rate of proliferation (p<0.0001), a higher level of tumour hypoxia (p = 0.0063) and a higher number of CD31+ vessels (p = 0.0005). Our results show that although a physiological training effect was seen with exercise, it did not affect tumour hypoxia, perfusion or growth rate. We suggest that exercise monotherapy is minimally effective and that future preclinical work should focus on the combination of exercise with standard cancer therapies.


Assuntos
Neoplasias da Mama/patologia , Melanoma Experimental/patologia , Condicionamento Físico Animal/métodos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Distribuição Aleatória , Corrida , Hipóxia Tumoral , Microambiente Tumoral
7.
Biochem Soc Trans ; 46(5): 1147-1159, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30301842

RESUMO

Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.


Assuntos
Ácido Ascórbico/sangue , Ácido Ascórbico/fisiologia , Inflamação/metabolismo , Neoplasias/metabolismo , Animais , Hipóxia Celular , Cobre/química , Células Dendríticas/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema Imunitário , Ferro/química , Células Matadoras Naturais/metabolismo , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Neutrófilos/metabolismo , Fenótipo , Transdução de Sinais , Células-Tronco/citologia , Linfócitos T/metabolismo
8.
Pancreatology ; 15(6): 647-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444748

RESUMO

BACKGROUND: The objective of this study was to determine if RAS bioactive enzymes and peptides are perturbed in acute pancreatitis and associated lung injury. METHODS: The intervention group of mice were treated with ten hourly intraperitoneal (i.p.) injections of caerulein (50 µg/kg) to induce acute pancreatitis. Animals were euthanized, samples of pancreas, lung and blood were collected, and plasma was prepared and stored for subsequent analysis. ACE and ACE2 activities were determined by spectrofluorometric assay. ACE, ACE2, Ang II and Ang-(1-7) levels were quantified by ELISA. RESULTS: There was a significant decrease in ACE2 enzymatic activity in pancreatic and lung tissues of mice with acute pancreatitis. In contrast, there were no significant changes in measured levels of ACE and ACE2 in the pancreas, and lung or activity of ACE in pancreatic and lung tissue following acute pancreatitis. There were no significant differences in the activities and levels of circulating ACE and ACE2 following acute pancreatitis. The ACE to ACE2 activity ratio was markedly increased in pancreatic and lung tissues of mice with acute pancreatitis. No significant changes were observed in the levels of Ang II except for a decrease in lung tissue. No changes were observed in Ang-(1-7) levels in pancreas, lung and plasma between the groups. The Ang II to Ang-(1-7) ratio was increased in the pancreas but was decreased in the lung following caerulein treatment. CONCLUSION: These data suggest dysregulation of RAS in acute pancreatitis as evidenced by altered Ang II/Ang-(1-7) levels induced by the imbalance of ACE/ACE2 activity.


Assuntos
Angiotensina II/metabolismo , Ceruletídeo/toxicidade , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina I/genética , Angiotensina I/metabolismo , Angiotensina II/sangue , Angiotensina II/genética , Enzima de Conversão de Angiotensina 2 , Animais , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Distribuição Aleatória , Sistema Renina-Angiotensina/fisiologia
9.
Am J Physiol Gastrointest Liver Physiol ; 305(10): G712-21, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24008358

RESUMO

Hydrogen sulfide (H2S) has been reported to be involved in the signaling of the inflammatory response; however, there are differing views as to whether it is pro- or anti-inflammatory. In this study, we sought to determine whether endogenously synthesized H2S via cystathionine-γ-lyase (CSE) plays a pro- or anti-inflammatory role in caerulein-induced pancreatitis. To investigate this, we used mice genetically deficient in CSE to elucidate the function of CSE in caerulein-induced acute pancreatitis. We compared the inflammatory response and tissue damage of wild-type (WT) and CSE knockout (KO) mice following 10 hourly administrations of 50 µg/kg caerulein or saline control. From this, we found that the CSE KO mice showed significantly less local pancreatic damage as well as acute pancreatitis-associated lung injury compared with the WT mice. There were also lower levels of pancreatic eicosanoid and cytokines, as well as reduced acinar cell NF-κB activation in the CSE KO mice compared with WT mice. Additionally, in WT mice, there was a greater level of pancreatic CSE expression and sulfide-synthesizing activity in caerulein-induced pancreatitis compared with the saline control. When comparing the two saline-treated control groups, we noted that the CSE KO mice showed significantly less pancreatic H2S-synthesizing activity relative to the WT mice. These results indicate that endogenous H2S generated by CSE plays a key proinflammatory role via NF-κB activation in caerulein-induced pancreatitis, and its genetic deletion affords significant protection against acute pancreatitis and associated lung injury.


Assuntos
Ceruletídeo/toxicidade , Cistationina gama-Liase/metabolismo , Pancreatite/induzido quimicamente , Animais , Cistationina gama-Liase/genética , Regulação da Expressão Gênica/fisiologia , Sulfeto de Hidrogênio/metabolismo , Pneumopatias/induzido quimicamente , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
10.
Appl Microbiol Biotechnol ; 97(17): 7845-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23838794

RESUMO

Hydrogen sulfide is an inflammatory mediator and is produced by the activity of the enzyme cystathionine γ-lyase (CSE) in macrophages. Previously, pharmacological inhibition of CSE has been reported to have conflicting results, and this may be due to the lack of specificity of the pharmacological agents. Therefore, this study used a very specific approach of small interfering RNA (siRNA) to inhibit the production of the CSE in an in vitro setting. We found that the activation of macrophages by lipopolysaccharide (LPS) resulted in higher levels of CSE mRNA and protein as well as the increased production of proinflammatory cytokines and nitric oxide (NO). We successfully used siRNA to specifically reduce the levels of CSE mRNA and protein in activated macrophages. Furthermore, the levels of proinflammatory cytokines in LPS-activated macrophages were significantly lower in siRNA-transfected cells compared to those in untransfected controls. However, the production levels of NO by the transfected cells were higher, suggesting that CSE activity has an inhibitory effect on NO production. These findings suggest that the CSE enzyme has a crucial role in the activation of macrophages, and its activity has an inhibitory effect on NO production by these cells.


Assuntos
Cistationina gama-Liase/genética , Regulação para Baixo , Sulfeto de Hidrogênio/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/enzimologia , Macrófagos/imunologia , RNA Interferente Pequeno , Animais , Linhagem Celular , Cistationina gama-Liase/imunologia , Citocinas/genética , Citocinas/imunologia , Camundongos , Óxido Nítrico/imunologia , Transfecção
11.
PLoS One ; 7(3): e32574, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396778

RESUMO

Hydrogen sulfide (H(2)S), a novel gaseous messenger, is synthesized endogenously from L-cysteine by two pyridoxal-5'-phosphate-dependent enzymes, cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE). S-propargyl-cysteine (SPRC) is a slow H(2)S releasing drug that provides cysteine, a substrate of CSE. The present study was aimed to investigate the effects of SPRC in an in vivo model of acute pancreatitis (AP) in mice. AP was induced in mice by hourly caerulein injections (50 µg/kg) for 10 hours. Mice were treated with SPRC (10 mg/kg) or vehicle (distilled water). SPRC was administered either 12 h before or 3 h before the induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and processed to measure the plasma amylase, plasma H(2)S, myeloperoxidase (MPO) activities and cytokine levels in pancreas and lung. The results revealed that significant reduction of inflammation, both in pancreas and lung was associated with SPRC given 3 h prior to the induction of AP. Furthermore, the beneficial effects of SPRC were associated with reduction of pancreatic and pulmonary pro-inflammatory cytokines and increase of anti-inflammatory cytokine. SPRC administered 12 h before AP induction did not cause significant improvement in pancreatic and lung inflammation. Plasma H(2)S concentration showed significant difference in H(2)S levels between control, vehicle and SPRC (administered 3 h before AP) treatment groups. In conclusion, these data provide evidence for protective effects of SPRC in AP possibly by virtue of its slow release of endogenous H(2)S.


Assuntos
Ceruletídeo/metabolismo , Cisteína/análogos & derivados , Pancreatite/metabolismo , Doença Aguda , Amilases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cisteína/farmacologia , Citocinas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Gases , Sulfeto de Hidrogênio/farmacologia , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/induzido quimicamente , Peroxidase/metabolismo , Fatores de Tempo
12.
Pancreatology ; 9(1-2): 150-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19077466

RESUMO

BACKGROUND/AIMS: The role of nitric oxide (NO) has been increasingly implicated in the pathophysiology of acute pancreatitis (AP). Studies have shown increased NO production in AP although not all are agreeable on whether NO is beneficial or detrimental in AP. This study aims to profile NO production and NO synthase (NOS) expression in the pancreas and lungs in the progression of AP in mice to gain insights to the role played by different NOS isoforms. METHODS: AP was induced in mice by hourly administration of cerulein. NO production was determined by measuring the total nitrite and nitrate (NOx) content while NOS expression was measured by Western blot. RESULTS: Pancreatic NO production increased sharply and was sustained throughout AP. iNOS expression was greatly increased while eNOS was downregulated at the later stages. In the lungs, there was an unexpected early increase in the constitutive NOS expression; however iNOS was also significantly overexpressed at the later time point along with a significant increase in NO. Acinar cells were found to overproduce NO in response to cerulein hyperstimulation with iNOS again being the major contributor. CONCLUSION: These data show that NO production and NOS expression are differentially regulated temporally and in magnitude in the pancreas and lungs in response to cerulein hyperstimulation which suggests differing roles for each NOS isoform. and IAP.


Assuntos
Lesão Pulmonar/enzimologia , Óxido Nítrico Sintase/biossíntese , Pancreatite/enzimologia , Doença Aguda , Animais , Ceruletídeo , Pulmão/enzimologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Pâncreas/enzimologia , Pancreatite/induzido quimicamente
13.
J Leukoc Biol ; 81(5): 1322-32, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17289797

RESUMO

Hydrogen sulfide (H2S) is now considered an endogenous, gaseous mediator, which has been demonstrated to be involved in many inflammatory states. However, the mechanism of its proinflammatory function remains unknown. In the present study, we used IFN-gamma-primed human monocytic cell line U937 to investigate the effects of H2S in vitro on monocytes. We found that treatment with the H2S donor, sodium hydrosulfide, led to significant increases in the mRNA expression and protein production of TNF-alpha, IL-1beta, and IL-6 in U937 cells. H2S-triggered monocyte activation was confirmed further by the up-regulation of CD11b expression on the cell surface. We also observed that H2S could induce a rapid degradation of IkappaBalpha and subsequent activation of NF-kappaB p65, and this effect was attenuated by Bay 11-7082, a specific inhibitor of NF-kappaB. Furthermore, pretreatment of cells with Bay 11-7082 substantially inhibited the secretion of TNF-alpha, IL-1beta, and IL-6 induced by H2S. We also found that H2S stimulated the phosphorylation and activation of ERK1/2, but not of p38 MAPK and JNK, and pretreatment with PD98059, a selective MEK1 antagonist, could inhibit H2S-induced NF-kappaB activation markedly. Together, our findings suggest for the first time that H2S stimulates the activation of human monocytes with the generation of proinflammatory cytokines, and this response is, at least partially, through the ERK-NF-kappaB signaling pathway.


Assuntos
Citocinas/biossíntese , Citocinas/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Monócitos/efeitos dos fármacos , NF-kappa B/imunologia , Sulfetos/farmacologia , Antígeno CD11b/biossíntese , Antígeno CD11b/efeitos dos fármacos , Linhagem Celular , Citocinas/genética , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Flavonoides/farmacologia , Perfilação da Expressão Gênica , Humanos , Proteínas I-kappa B/efeitos dos fármacos , Proteínas I-kappa B/imunologia , Inflamação/induzido quimicamente , Monócitos/imunologia , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , Nitrilas/farmacologia , Fosforilação , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Sulfetos/antagonistas & inibidores , Sulfonas/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
14.
J Bone Joint Surg Am ; 89(1): 74-81, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200313

RESUMO

BACKGROUND: A repaired tendon needs to be protected for weeks until it has accrued enough strength to handle physiological loads. Tissue-engineering techniques have shown promise in the treatment of tendon and ligament defects. The present study tested the hypothesis that bone marrow-derived mesenchymal stem cells can accelerate tendon-healing after primary repair of a tendon injury in a rabbit model. METHODS: Fifty-seven New Zealand White rabbits were used as the experimental animals, and seven others were used as the source of bone marrow-derived mesenchymal stem cells. The injury model was a sharp complete transection through the midsubstance of the Achilles tendon. The transected tendon was immediately repaired with use of a modified Kessler suture and a running epitendinous suture. Both limbs were used, and each side was randomized to receive either bone marrow-derived mesenchymal stem cells in a fibrin carrier or fibrin carrier alone (control). Postoperatively, the rabbits were not immobilized. Specimens were harvested at one, three, six, and twelve weeks for analysis, which included evaluation of gross morphology (sixty-two specimens), cell tracing (twelve specimens), histological assessment (forty specimens), immunohistochemistry studies (thirty specimens), morphometric analysis (forty specimens), and mechanical testing (sixty-two specimens). RESULTS: There were no differences between the two groups with regard to the gross morphology of the tendons. The fibrin had degraded by three weeks. Cell tracing showed that labeled bone marrow-derived mesenchymal stem cells remained viable and present in the intratendinous region for at least six weeks, becoming more diffuse at later time-periods. At three weeks, collagen fibers appeared more organized and there were better morphometric nuclear parameters in the treatment group (p < 0.05). At six and twelve weeks, there were no differences between the groups with regard to morphometric nuclear parameters. Biomechanical testing showed improved modulus in the treatment group as compared with the control group at three weeks (p < 0.05) but not at subsequent time-periods. CONCLUSIONS: Intratendinous cell therapy with bone marrow-derived mesenchymal stem cells following primary tendon repair can improve histological and biomechanical parameters in the early stages of tendon-healing.


Assuntos
Tendão do Calcâneo/lesões , Células da Medula Óssea , Transplante de Células-Tronco Mesenquimais , Cicatrização/fisiologia , Tendão do Calcâneo/citologia , Animais , Modelos Animais de Doenças , Feminino , Adesivo Tecidual de Fibrina , Coelhos , Técnicas de Sutura , Traumatismos dos Tendões/terapia , Engenharia Tecidual
15.
Am J Physiol Cell Physiol ; 291(3): C503-10, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16597918

RESUMO

The present study investigated the mechanism of mouse pancreatic acinar cell apoptosis induced by H(2)S in an in vitro system, using isolated pancreatic acini. Treatment of pancreatic acini with 10 microM NaHS (a donor of H(2)S) for 3 h caused phosphatidylserine externalization as shown by annexin V binding, an indicator of early stages of apoptosis. This treatment also resulted in the activation of the caspase cascade and major changes at the mitochondrial level. Caspase-3, -8, and -9 activities were stimulated by H(2)S treatment. Treatment with inhibitors of caspase-3, -8, and -9 significantly inhibited H(2)S-induced phosphatidylserine externalization as shown by reduced annexin V staining. The mitochondrial membrane potential was collapsed in H(2)S-treated acini as evidenced by fluorescence microscopy and quantitative analysis. Furthermore, the treatment of acini with H(2)S caused the release of cytochrome c by the mitochondria. To investigate the mechanism underlying pancreatic acinar cell apoptosis, we also characterized the protein expression of a range of molecules that are each known to influence the apoptotic pathway. Among proapoptotic proteins, Bax expression was activated in H(2)S-treated cells but not Bid, and the antiapoptotic proteins Bcl-X(L) and Bcl-2 did not show any activation in pancreatic acinar cell apoptosis. The death effector domain-containing protein Flip is downregulated in H(2)S-treated acini. These results demonstrate the induction of pancreatic acinar cell apoptosis in vitro by H(2)S and the involvement of both mitochondrial and death receptor pathways in the process of apoptosis.


Assuntos
Apoptose , Sulfeto de Hidrogênio/farmacologia , Pâncreas/citologia , Animais , Anexina A5/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Caspases/metabolismo , Citocromos c/metabolismo , Fluoresceína-5-Isotiocianato , Técnicas In Vitro , Masculino , Camundongos , Mitocôndrias/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Sulfetos/farmacologia
16.
Am J Physiol Gastrointest Liver Physiol ; 291(1): G95-G101, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16603484

RESUMO

We investigated the apoptotic pathway activated by crambene (1-cyano-2-hydroxy-3-butene), a plant nitrile, on pancreatic acinar cells. As evidenced by annexin V-FITC staining, crambene treatment for 3 h induced the apoptosis but not necrosis of pancreatic acini. Caspase-3, -8, and -9 activities in acini treated with crambene were significantly higher than in untreated acini. Treatment with caspase-3, -8, and -9 inhibitors inhibited annexin V staining, as well as caspase-3 activity, pointing to an important role of these caspases in crambene-induced acinar cell apoptosis. The mitochondrial membrane potential was collapsed, and cytochrome c was released from the mitochondria in crambene-treated acini. Neither TNF-alpha nor Fas ligand levels were changed in pancreatic acinar cells after crambene treatment. These results provide evidence for the induction of pancreatic acinar cell apoptosis in vitro by crambene and suggest the involvement of mitochondrial pathway in pancreatic acinar cell apoptosis.


Assuntos
Alcenos/administração & dosagem , Apoptose/fisiologia , Caspases/metabolismo , Potenciais da Membrana/fisiologia , Mitocôndrias/fisiologia , Nitrilas/administração & dosagem , Pâncreas/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...