Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 307: 102722, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35872439

RESUMO

The energy scarcity is exacerbating and needs an urgent solution. The most plausible solution to address the forthcoming energy scarcity is to diversify the energy sources. Developing the water-splitting process (WSP) efficiency depends on solar energy representing "21st-century dream technology". We present a comprehensive review of related papers employing graphitic carbon nitride (g-C3N4) as pure, doped, or composite nanostructure in the evolution of hydrogen from water dissociation under simulated sunlight irradiation, mainly in the last ten years. Herein, after a concise introduction to the main principle of the water-splitting process, the methods to synthesize, modify and upgrade the photocatalytic performance of g-C3N4 were reviewed in detail. Moreover, the main challenges of using g-C3N4-based photocatalytic material in WSP have been mentioned. The report mainly targets the g-C3N4 character, synthesis method, photocatalytic activity, and strategies toward enhancing photoreactivity under visible light, along with the reusability of the fabricated nanohybrid catalysts. Above and over, this review suggests the potential of g-C3N4 to produce green H2 from water at a competitive price, which can contribute to satisfying the global energy sector demand and suppressing global warming.


Assuntos
Hidrogênio , Água , Catálise
2.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947012

RESUMO

The development of advanced composite materials has taken center stage because of its advantages over traditional materials. Recently, carbon-based advanced additives have shown promising results in the development of advanced polymer composites. The inter- and intra-laminar fracture toughness in modes I and II, along with the thermal and electrical conductivities, were investigated. The HMWCNTs/epoxy composite was prepared using a multi-dispersion method, followed by uniform coating at the mid-layers of the CF/E prepregs interface using the spray coating technique. Analysis methods, such as double cantilever beam (DCB) and end notched flexure (ENF) tests, were carried out to study the mode I and II fracture toughness. The surface morphology of the composite was analyzed using field emission scanning electron microscopy (FESEM). The DCB test showed that the fracture toughness of the 0.2 wt.% and 0.4 wt.% HMWCNT composite laminates was improved by 39.15% and 115.05%, respectively, compared with the control sample. Furthermore, the ENF test showed that the mode II interlaminar fracture toughness for the composite laminate increased by 50.88% and 190%, respectively. The FESEM morphology results confirmed the HMWCNTs bridging at the fracture zones of the CF/E composite and the improved interlaminar fracture toughness. The thermogravimetric analysis (TGA) results demonstrated a strong intermolecular bonding between the epoxy and HMWCNTs, resulting in an improved thermal stability. Moreover, the differential scanning calorimetry (DSC) results confirmed that the addition of HMWCNT shifted the Tg to a higher temperature. An electrical conductivity study demonstrated that a higher CNT concentration in the composite laminate resulted in a higher conductivity improvement. This study confirmed that the demonstrated dispersion technique could create composite laminates with a strong interfacial bond interaction between the epoxy and HMWCNT, and thus improve their properties.

3.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572728

RESUMO

Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Materiais Biocompatíveis/uso terapêutico , Matriz Extracelular/efeitos dos fármacos , Humanos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Doenças Musculares/patologia , Polímeros/uso terapêutico , Cicatrização/efeitos dos fármacos
4.
Polymers (Basel) ; 11(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817133

RESUMO

The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.

5.
Int J Biol Macromol ; 131: 821-827, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904531

RESUMO

In this study, chitosan/polyvinyl alcohol/TiO2 nanofiber was fabricated via electrospinning at a pump rate of 1.5 mL/h and voltage 6 kV. Field-emission scanning electron microscopic images showed bead free finer nanofiber. Fourier transform infrared spectra proved the formation of strong bond among chitosan, polyvinyl alcohol and TiO2. X-ray powder diffraction showed that TiO2 became amorphous in the composite nanofiber. Toughness and thermal stability of the chitosan/PVA nanofibrous membrane was increased with addition TiO2. The chitosan/PVA/TiO2 nanofibrous membrane was stable at basic medium. But degraded in acidic and water medium after 93 and 162 h, respectively. The adsorption mechanism of congo red obeyed the Langmuir isotherm model. On the other hand, adsorption characteristic of methyl orange fitted well with both Langmuir and Freundlich isotherm models. The maximum adsorption capacity of the resulting membrane for congo red and methyl orange is 131 and 314 mg/g, respectively. However, a high dose of adsorbent was required for congo red.


Assuntos
Compostos Azo/química , Quitosana/química , Vermelho Congo/química , Nanofibras/química , Álcool de Polivinil/química , Titânio/química , Adsorção , Membranas Artificiais , Nanofibras/ultraestrutura , Análise Espectral , Resistência à Tração , Termodinâmica , Poluentes Químicos da Água/química , Purificação da Água
6.
Carbohydr Polym ; 191: 79-85, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661324

RESUMO

The chitosan/polyvinyl Alcohol/zeolite electrospun composite nanofibrous membrane was fabricated for adsorption of methyl orange. The EDX, TGA and tensile test were carried out for the characterization of the membrane. The Young's Modulus of the nanofibrous membranes increased by more than 100% with the addition of zeolite to chitosan/PVA. The batch adsorption tests were conducted by varying the initial concentration of methyl orange, contact time and pH of the dye solution. UV-vis results showed that most of the dye was adsorbed within 6 min. An adsorption kinetic study was carried out using the pseudo-second-order kinetic model, Lagergren-first-order model and intra particle diffusion model. The adsorption kinetics obeyed the Pseudo second order model. The adsorption mechanism was analyzed using the Langmuir and Freundlich isotherm model. The experimental data fits well with the Freundlich model. The adsorption capacity of the membrane was 153 mg/g. Adsorption capacity was decreased with increasing pH value. The resulting nanofiber became less active over methyl orange after several runs.

7.
Carbohydr Polym ; 177: 32-39, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962774

RESUMO

In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (qm) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate.


Assuntos
Compostos Azo/química , Quitosana/química , Cromo/química , Ferro/química , Nanofibras/química , Álcool de Polivinil/química , Acetilação , Adsorção , Íons/química
8.
Int J Biol Macromol ; 104(Pt A): 1133-1142, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28690164

RESUMO

The chitosan/polyvinyl alcohol/TiO2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO2 composite can be a very useful material for dye removal.


Assuntos
Quitosana/química , Nanocompostos/química , Álcool de Polivinil/química , Titânio/química , Acetilação , Adsorção , Hidrólise , Cinética , Temperatura
9.
J Hazard Mater ; 322(Pt A): 182-194, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436300

RESUMO

In this study, chitosan/polyvinyl alcohol (PVA)/zeolite nanofibrous composite membrane was fabricated via electrospinning. First, crude chitosan was hydrolyzed with NaOH for 24h. Afterward, hydrolyzed chitosan solution was blended with aqueous PVA solution in different weight ratios. Morphological analysis of chitosan/PVA electrospun nanofiber showed a defect-free nanofiber material with 50:50 weight ratio of chitosan/PVA. Subsequently, 1wt.% of zeolite was added to this blended solution of 50:50 chitosan/PVA. The resulting nanofiber was characterized with field emission scanning electron microscopy, X-Ray diffraction, Fourier transform infrared spectroscopy, swelling test, and adsorption test. Fine, bead-free nanofiber with homogeneous nanofiber was electrospun. The resulting membrane was stable in distilled water, acidic, and basic media in 20 days. Moreover, the adsorption ability of nanofibrous membrane was studied over Cr (VI), Fe (III), and Ni (II) ions using Langmuir isotherm. Kinetic parameters were estimated using the Lagergren first-order, pseudo-second-order, and intraparticle diffusion kinetic models. Kinetic study showed that adsorption rate was high. However, the resulting nanofiber membrane showed less adsorption capacity at high concentration. The adsorption capacity of nanofiber was unaltered after five recycling runs, which indicated the reusability of chitosan/PVA/zeolite nanofibrous membrane. Therefore, chitosan/PVA/zeolite nanofiber can be a useful material for water treatment at moderate concentration of heavy metals.

10.
Carbohydr Polym ; 157: 1568-1576, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987870

RESUMO

A chitosan/polyvinyl alcohol (PVA)/zeolite composite was fabricated in this study. The composite was analyzed through field emission scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, and weight loss test. FTIR and XRD results revealed a strong interaction among chitosan, PVA, and zeolite. Weight loss test results indicated that the composite was stable in acidic and basic media. Congo red was removed through flocculation, and the removal rate was 94% at an initial concentration of 100mg/L for a dose of 1g/L. The removal rate of methyl orange was controlled by adsorption at an initial concentration of less than 100mg/L. Flocculation occurred at high concentrations. The removal rate was also 94% at an initial concentration of 500mg/L for a dose of 5g/L. The adsorption behavior of the composite for the removal of methyl orange and Cr(VI) was described by using a pseudo-second-order kinetic model. The adsorption capacity of the composite for Cr(VI) was 450mg/g. Therefore, the synthesized composite exhibited versatility during the removal of dyes and heavy metals.

11.
Carbohydr Polym ; 157: 57-64, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987964

RESUMO

In this study, chitosan/poly (ethylene oxide) nanofibres were fabricated at different chitosan:PEO weight ratio by electrospinning process. The effects of chitosan/PEO composition onto adsorption capability for Cu(II), Zn(II) and Pb(II) ions were studied. Formation of beadless fibres were achieved at 60:40 chitosan:PEO ratio. Average fiber diameter, maximum tensile strength and the specific surface area of the beadless fibres were found to be 115±31nm, 1.58MPa and 218m2/g, respectively. Chitosan/PEO composition that produced beadless fibres tend to possess higher hydrophilicity and maximum specific surface area. These characteristics lead the beadless fibres to the maximum adsorption capability. Adsorption equilibrium data were analysed by Langmuir and Freundlich isotherm. Freundlich isotherm showed the better fit with the experimental data and proved the existence of the monolayer adsorption conditions. The maximum adsorption capacity of the beadless fibres for Cu(II), Zn(II) and Pb(II) ions were found to be 120, 117 and 108mgg-1, respectively.


Assuntos
Quitosana/análise , Óxido de Etileno/química , Metais Pesados/isolamento & purificação , Nanofibras , Adsorção , Concentração de Íons de Hidrogênio , Cinética
12.
Carbohydr Polym ; 149: 317-31, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27261756

RESUMO

Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.


Assuntos
Quitosana/química , Corantes/química , Óxidos/química , Fotólise , Álcool de Polivinil/química , Titânio/química , Adsorção , Catálise , Corantes/isolamento & purificação , Peso Molecular , Soluções , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
13.
ScientificWorldJournal ; 2014: 387647, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982946

RESUMO

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


Assuntos
Arecaceae , Materiais de Construção , Força Compressiva , Resíduos Industriais , Teste de Materiais
14.
ScientificWorldJournal ; 2014: 589479, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963510

RESUMO

Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Ácido Nítrico/química , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA